Application of the quasi-static memdiode model in cross-point arrays for large dataset pattern recognition
- Autores
- Aguirre, Fernando Leonel; Pazos, Sebastián Matías; Palumbo, Felix Roberto Mario; Suñé, Jordi; Miranda, Enrique
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We investigate the use and performance of the quasi-static memdiode model (QMM) when incorporated into large cross-point arrays intended for pattern classification tasks. Following Chua's memristive devices theory, the QMM comprises two equations, one equation for the electron transport based on the double-diode circuit with single series resistance and a second equation for the internal memory state of the device based on the so-called logistic hysteron or memory map. Ex-situ trained memdiodes with different MNIST-like databases are used to establish the synaptic weights linking the top and bottom wire networks. The role played by the memdiode electrical parameters, wire resistance and capacitance values, image pixelation, connection schemes, signal-to-noise ratio and device-to-device variability in the classification effectiveness are investigated. The confusion matrix is used to benchmark the system performance metrics. We show that the simplicity, accuracy and robustness of the memdiode model makes it a suitable candidate for the realistic simulation of large-scale neural networks with non-idealities.
Fil: Aguirre, Fernando Leonel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Unidad de Investigación y Desarrollo de las Ingenierías; Argentina. Universitat Autònoma de Barcelona; España
Fil: Pazos, Sebastián Matías. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Unidad de Investigación y Desarrollo de las Ingenierías; Argentina
Fil: Palumbo, Felix Roberto Mario. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Unidad de Investigación y Desarrollo de las Ingenierías; Argentina
Fil: Suñé, Jordi. Universitat Autònoma de Barcelona; España
Fil: Miranda, Enrique. Universitat Autònoma de Barcelona; España - Materia
-
CROSS-POINT
MEMORY
MEMRISTOR
NEUROMORPHIC
PATTERN RECOGNITION
RESISTIVE SWITCHING
RRAM - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/163235
Ver los metadatos del registro completo
id |
CONICETDig_8a33759e1660d9f36cb158d565f7d5b3 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/163235 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Application of the quasi-static memdiode model in cross-point arrays for large dataset pattern recognitionAguirre, Fernando LeonelPazos, Sebastián MatíasPalumbo, Felix Roberto MarioSuñé, JordiMiranda, EnriqueCROSS-POINTMEMORYMEMRISTORNEUROMORPHICPATTERN RECOGNITIONRESISTIVE SWITCHINGRRAMhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2We investigate the use and performance of the quasi-static memdiode model (QMM) when incorporated into large cross-point arrays intended for pattern classification tasks. Following Chua's memristive devices theory, the QMM comprises two equations, one equation for the electron transport based on the double-diode circuit with single series resistance and a second equation for the internal memory state of the device based on the so-called logistic hysteron or memory map. Ex-situ trained memdiodes with different MNIST-like databases are used to establish the synaptic weights linking the top and bottom wire networks. The role played by the memdiode electrical parameters, wire resistance and capacitance values, image pixelation, connection schemes, signal-to-noise ratio and device-to-device variability in the classification effectiveness are investigated. The confusion matrix is used to benchmark the system performance metrics. We show that the simplicity, accuracy and robustness of the memdiode model makes it a suitable candidate for the realistic simulation of large-scale neural networks with non-idealities.Fil: Aguirre, Fernando Leonel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Unidad de Investigación y Desarrollo de las Ingenierías; Argentina. Universitat Autònoma de Barcelona; EspañaFil: Pazos, Sebastián Matías. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Unidad de Investigación y Desarrollo de las Ingenierías; ArgentinaFil: Palumbo, Felix Roberto Mario. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Unidad de Investigación y Desarrollo de las Ingenierías; ArgentinaFil: Suñé, Jordi. Universitat Autònoma de Barcelona; EspañaFil: Miranda, Enrique. Universitat Autònoma de Barcelona; EspañaInstitute of Electrical and Electronics Engineers2019-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/163235Aguirre, Fernando Leonel; Pazos, Sebastián Matías; Palumbo, Felix Roberto Mario; Suñé, Jordi; Miranda, Enrique; Application of the quasi-static memdiode model in cross-point arrays for large dataset pattern recognition; Institute of Electrical and Electronics Engineers; IEEE Access; 8; 11-2019; 202174-2021932169-3536CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/9248999/info:eu-repo/semantics/altIdentifier/doi/10.1109/ACCESS.2020.3035638info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:06:02Zoai:ri.conicet.gov.ar:11336/163235instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:06:03.143CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Application of the quasi-static memdiode model in cross-point arrays for large dataset pattern recognition |
title |
Application of the quasi-static memdiode model in cross-point arrays for large dataset pattern recognition |
spellingShingle |
Application of the quasi-static memdiode model in cross-point arrays for large dataset pattern recognition Aguirre, Fernando Leonel CROSS-POINT MEMORY MEMRISTOR NEUROMORPHIC PATTERN RECOGNITION RESISTIVE SWITCHING RRAM |
title_short |
Application of the quasi-static memdiode model in cross-point arrays for large dataset pattern recognition |
title_full |
Application of the quasi-static memdiode model in cross-point arrays for large dataset pattern recognition |
title_fullStr |
Application of the quasi-static memdiode model in cross-point arrays for large dataset pattern recognition |
title_full_unstemmed |
Application of the quasi-static memdiode model in cross-point arrays for large dataset pattern recognition |
title_sort |
Application of the quasi-static memdiode model in cross-point arrays for large dataset pattern recognition |
dc.creator.none.fl_str_mv |
Aguirre, Fernando Leonel Pazos, Sebastián Matías Palumbo, Felix Roberto Mario Suñé, Jordi Miranda, Enrique |
author |
Aguirre, Fernando Leonel |
author_facet |
Aguirre, Fernando Leonel Pazos, Sebastián Matías Palumbo, Felix Roberto Mario Suñé, Jordi Miranda, Enrique |
author_role |
author |
author2 |
Pazos, Sebastián Matías Palumbo, Felix Roberto Mario Suñé, Jordi Miranda, Enrique |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
CROSS-POINT MEMORY MEMRISTOR NEUROMORPHIC PATTERN RECOGNITION RESISTIVE SWITCHING RRAM |
topic |
CROSS-POINT MEMORY MEMRISTOR NEUROMORPHIC PATTERN RECOGNITION RESISTIVE SWITCHING RRAM |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
We investigate the use and performance of the quasi-static memdiode model (QMM) when incorporated into large cross-point arrays intended for pattern classification tasks. Following Chua's memristive devices theory, the QMM comprises two equations, one equation for the electron transport based on the double-diode circuit with single series resistance and a second equation for the internal memory state of the device based on the so-called logistic hysteron or memory map. Ex-situ trained memdiodes with different MNIST-like databases are used to establish the synaptic weights linking the top and bottom wire networks. The role played by the memdiode electrical parameters, wire resistance and capacitance values, image pixelation, connection schemes, signal-to-noise ratio and device-to-device variability in the classification effectiveness are investigated. The confusion matrix is used to benchmark the system performance metrics. We show that the simplicity, accuracy and robustness of the memdiode model makes it a suitable candidate for the realistic simulation of large-scale neural networks with non-idealities. Fil: Aguirre, Fernando Leonel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Unidad de Investigación y Desarrollo de las Ingenierías; Argentina. Universitat Autònoma de Barcelona; España Fil: Pazos, Sebastián Matías. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Unidad de Investigación y Desarrollo de las Ingenierías; Argentina Fil: Palumbo, Felix Roberto Mario. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Unidad de Investigación y Desarrollo de las Ingenierías; Argentina Fil: Suñé, Jordi. Universitat Autònoma de Barcelona; España Fil: Miranda, Enrique. Universitat Autònoma de Barcelona; España |
description |
We investigate the use and performance of the quasi-static memdiode model (QMM) when incorporated into large cross-point arrays intended for pattern classification tasks. Following Chua's memristive devices theory, the QMM comprises two equations, one equation for the electron transport based on the double-diode circuit with single series resistance and a second equation for the internal memory state of the device based on the so-called logistic hysteron or memory map. Ex-situ trained memdiodes with different MNIST-like databases are used to establish the synaptic weights linking the top and bottom wire networks. The role played by the memdiode electrical parameters, wire resistance and capacitance values, image pixelation, connection schemes, signal-to-noise ratio and device-to-device variability in the classification effectiveness are investigated. The confusion matrix is used to benchmark the system performance metrics. We show that the simplicity, accuracy and robustness of the memdiode model makes it a suitable candidate for the realistic simulation of large-scale neural networks with non-idealities. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/163235 Aguirre, Fernando Leonel; Pazos, Sebastián Matías; Palumbo, Felix Roberto Mario; Suñé, Jordi; Miranda, Enrique; Application of the quasi-static memdiode model in cross-point arrays for large dataset pattern recognition; Institute of Electrical and Electronics Engineers; IEEE Access; 8; 11-2019; 202174-202193 2169-3536 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/163235 |
identifier_str_mv |
Aguirre, Fernando Leonel; Pazos, Sebastián Matías; Palumbo, Felix Roberto Mario; Suñé, Jordi; Miranda, Enrique; Application of the quasi-static memdiode model in cross-point arrays for large dataset pattern recognition; Institute of Electrical and Electronics Engineers; IEEE Access; 8; 11-2019; 202174-202193 2169-3536 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/9248999/ info:eu-repo/semantics/altIdentifier/doi/10.1109/ACCESS.2020.3035638 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers |
publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980240475815936 |
score |
12.993085 |