Multiscale formulation for material failure accounting for cohesive cracks at the macro and micro scales
- Autores
- Toro, Sebastian; Sánchez, Pablo Javier; Blanco, Pablo Javier; De Souza Neto, Eduardo Alberto; Huespe, Alfredo Edmundo; Feijóo, Raúl Antonino
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This contribution presents a two-scale formulation devised to simulate failure in materials with heterogeneous micro-structure. The mechanical model accounts for the nucleation of cohesive cracks in the micro-scale domain. The evolution and propagation of cohesive micro-cracks can induce material instability at the macro-scale level. Then, a cohesive crack is nucleated in the macro-scale model which considers, in a homogenized sense, the constitutive response of the intricate failure mode taking place at the smaller length scale.The two-scale semi-concurrent model is based on the concept of Representative Volume Element (RVE). It is developed following an axiomatic variational structure. Two hypotheses are introduced in order to build the foundations of the entire theory, namely: (i) a mechanism for transferring kinematical information from macro-to-micro scale along with the concept of ?Kinematical Admissibility?, and (ii) a Multiscale Variational Principle of internal virtual power equivalence between the involved scales of analysis. The homogenization formulae for the generalized stresses, as well as the equilibrium equations at the micro-scale, are consequences of the variational statement of the problem.The present multiscale technique is a generalization of a previous model proposed by the authors [1, 2] and could be viewed as an application of a recent contribution [3]. The main novelty in this article lies on the fact that failure modes in the micro-structure involve a set of multiple cohesive cracks, connected or disconnected, with arbitrary orientation, conforming a complex tortuous failure path. Following the present multiscale modeling approach, the tortuosity effect is introduced as a kinematical concept and has a direct consequence in the homogenized mechanical response.Numerical examples are presented showing the potentialities of the model to simulate complex and realistic fracture problems in heterogeneous materials. In order to validate the multiscale technique in a rigorous manner, comparisons with the so-called DNS (Direct Numerical Solution) approach are also presented.
Fil: Toro, Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina
Fil: Sánchez, Pablo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina
Fil: Blanco, Pablo Javier. Laboratorio Nacional de Computacao Cientifica; Brasil
Fil: De Souza Neto, Eduardo Alberto. Zienkiewicz Centre For Computational Engineering; Reino Unido
Fil: Huespe, Alfredo Edmundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina
Fil: Feijóo, Raúl Antonino. Laboratorio Nacional de Computacao Cientifica; Brasil - Materia
-
semi-concurrent multiscale model
material failure
crack path tortuosity
homogenization of traction-separation law
heterogeneous materials - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/113861
Ver los metadatos del registro completo
id |
CONICETDig_38bcb8fb8a7c2de92701bb782262f998 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/113861 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Multiscale formulation for material failure accounting for cohesive cracks at the macro and micro scalesToro, SebastianSánchez, Pablo JavierBlanco, Pablo JavierDe Souza Neto, Eduardo AlbertoHuespe, Alfredo EdmundoFeijóo, Raúl Antoninosemi-concurrent multiscale modelmaterial failurecrack path tortuosityhomogenization of traction-separation lawheterogeneous materialshttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2https://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1This contribution presents a two-scale formulation devised to simulate failure in materials with heterogeneous micro-structure. The mechanical model accounts for the nucleation of cohesive cracks in the micro-scale domain. The evolution and propagation of cohesive micro-cracks can induce material instability at the macro-scale level. Then, a cohesive crack is nucleated in the macro-scale model which considers, in a homogenized sense, the constitutive response of the intricate failure mode taking place at the smaller length scale.The two-scale semi-concurrent model is based on the concept of Representative Volume Element (RVE). It is developed following an axiomatic variational structure. Two hypotheses are introduced in order to build the foundations of the entire theory, namely: (i) a mechanism for transferring kinematical information from macro-to-micro scale along with the concept of ?Kinematical Admissibility?, and (ii) a Multiscale Variational Principle of internal virtual power equivalence between the involved scales of analysis. The homogenization formulae for the generalized stresses, as well as the equilibrium equations at the micro-scale, are consequences of the variational statement of the problem.The present multiscale technique is a generalization of a previous model proposed by the authors [1, 2] and could be viewed as an application of a recent contribution [3]. The main novelty in this article lies on the fact that failure modes in the micro-structure involve a set of multiple cohesive cracks, connected or disconnected, with arbitrary orientation, conforming a complex tortuous failure path. Following the present multiscale modeling approach, the tortuosity effect is introduced as a kinematical concept and has a direct consequence in the homogenized mechanical response.Numerical examples are presented showing the potentialities of the model to simulate complex and realistic fracture problems in heterogeneous materials. In order to validate the multiscale technique in a rigorous manner, comparisons with the so-called DNS (Direct Numerical Solution) approach are also presented.Fil: Toro, Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; ArgentinaFil: Sánchez, Pablo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; ArgentinaFil: Blanco, Pablo Javier. Laboratorio Nacional de Computacao Cientifica; BrasilFil: De Souza Neto, Eduardo Alberto. Zienkiewicz Centre For Computational Engineering; Reino UnidoFil: Huespe, Alfredo Edmundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; ArgentinaFil: Feijóo, Raúl Antonino. Laboratorio Nacional de Computacao Cientifica; BrasilPergamon-Elsevier Science Ltd2016-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/113861Toro, Sebastian; Sánchez, Pablo Javier; Blanco, Pablo Javier; De Souza Neto, Eduardo Alberto; Huespe, Alfredo Edmundo; et al.; Multiscale formulation for material failure accounting for cohesive cracks at the macro and micro scales; Pergamon-Elsevier Science Ltd; International Journal of Plasticity; 76; 1-2016; 75-1100749-6419CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0749641915001199info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ijplas.2015.07.001info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:52:48Zoai:ri.conicet.gov.ar:11336/113861instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:52:49.043CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Multiscale formulation for material failure accounting for cohesive cracks at the macro and micro scales |
title |
Multiscale formulation for material failure accounting for cohesive cracks at the macro and micro scales |
spellingShingle |
Multiscale formulation for material failure accounting for cohesive cracks at the macro and micro scales Toro, Sebastian semi-concurrent multiscale model material failure crack path tortuosity homogenization of traction-separation law heterogeneous materials |
title_short |
Multiscale formulation for material failure accounting for cohesive cracks at the macro and micro scales |
title_full |
Multiscale formulation for material failure accounting for cohesive cracks at the macro and micro scales |
title_fullStr |
Multiscale formulation for material failure accounting for cohesive cracks at the macro and micro scales |
title_full_unstemmed |
Multiscale formulation for material failure accounting for cohesive cracks at the macro and micro scales |
title_sort |
Multiscale formulation for material failure accounting for cohesive cracks at the macro and micro scales |
dc.creator.none.fl_str_mv |
Toro, Sebastian Sánchez, Pablo Javier Blanco, Pablo Javier De Souza Neto, Eduardo Alberto Huespe, Alfredo Edmundo Feijóo, Raúl Antonino |
author |
Toro, Sebastian |
author_facet |
Toro, Sebastian Sánchez, Pablo Javier Blanco, Pablo Javier De Souza Neto, Eduardo Alberto Huespe, Alfredo Edmundo Feijóo, Raúl Antonino |
author_role |
author |
author2 |
Sánchez, Pablo Javier Blanco, Pablo Javier De Souza Neto, Eduardo Alberto Huespe, Alfredo Edmundo Feijóo, Raúl Antonino |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
semi-concurrent multiscale model material failure crack path tortuosity homogenization of traction-separation law heterogeneous materials |
topic |
semi-concurrent multiscale model material failure crack path tortuosity homogenization of traction-separation law heterogeneous materials |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.5 https://purl.org/becyt/ford/2 https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
This contribution presents a two-scale formulation devised to simulate failure in materials with heterogeneous micro-structure. The mechanical model accounts for the nucleation of cohesive cracks in the micro-scale domain. The evolution and propagation of cohesive micro-cracks can induce material instability at the macro-scale level. Then, a cohesive crack is nucleated in the macro-scale model which considers, in a homogenized sense, the constitutive response of the intricate failure mode taking place at the smaller length scale.The two-scale semi-concurrent model is based on the concept of Representative Volume Element (RVE). It is developed following an axiomatic variational structure. Two hypotheses are introduced in order to build the foundations of the entire theory, namely: (i) a mechanism for transferring kinematical information from macro-to-micro scale along with the concept of ?Kinematical Admissibility?, and (ii) a Multiscale Variational Principle of internal virtual power equivalence between the involved scales of analysis. The homogenization formulae for the generalized stresses, as well as the equilibrium equations at the micro-scale, are consequences of the variational statement of the problem.The present multiscale technique is a generalization of a previous model proposed by the authors [1, 2] and could be viewed as an application of a recent contribution [3]. The main novelty in this article lies on the fact that failure modes in the micro-structure involve a set of multiple cohesive cracks, connected or disconnected, with arbitrary orientation, conforming a complex tortuous failure path. Following the present multiscale modeling approach, the tortuosity effect is introduced as a kinematical concept and has a direct consequence in the homogenized mechanical response.Numerical examples are presented showing the potentialities of the model to simulate complex and realistic fracture problems in heterogeneous materials. In order to validate the multiscale technique in a rigorous manner, comparisons with the so-called DNS (Direct Numerical Solution) approach are also presented. Fil: Toro, Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina Fil: Sánchez, Pablo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina Fil: Blanco, Pablo Javier. Laboratorio Nacional de Computacao Cientifica; Brasil Fil: De Souza Neto, Eduardo Alberto. Zienkiewicz Centre For Computational Engineering; Reino Unido Fil: Huespe, Alfredo Edmundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina Fil: Feijóo, Raúl Antonino. Laboratorio Nacional de Computacao Cientifica; Brasil |
description |
This contribution presents a two-scale formulation devised to simulate failure in materials with heterogeneous micro-structure. The mechanical model accounts for the nucleation of cohesive cracks in the micro-scale domain. The evolution and propagation of cohesive micro-cracks can induce material instability at the macro-scale level. Then, a cohesive crack is nucleated in the macro-scale model which considers, in a homogenized sense, the constitutive response of the intricate failure mode taking place at the smaller length scale.The two-scale semi-concurrent model is based on the concept of Representative Volume Element (RVE). It is developed following an axiomatic variational structure. Two hypotheses are introduced in order to build the foundations of the entire theory, namely: (i) a mechanism for transferring kinematical information from macro-to-micro scale along with the concept of ?Kinematical Admissibility?, and (ii) a Multiscale Variational Principle of internal virtual power equivalence between the involved scales of analysis. The homogenization formulae for the generalized stresses, as well as the equilibrium equations at the micro-scale, are consequences of the variational statement of the problem.The present multiscale technique is a generalization of a previous model proposed by the authors [1, 2] and could be viewed as an application of a recent contribution [3]. The main novelty in this article lies on the fact that failure modes in the micro-structure involve a set of multiple cohesive cracks, connected or disconnected, with arbitrary orientation, conforming a complex tortuous failure path. Following the present multiscale modeling approach, the tortuosity effect is introduced as a kinematical concept and has a direct consequence in the homogenized mechanical response.Numerical examples are presented showing the potentialities of the model to simulate complex and realistic fracture problems in heterogeneous materials. In order to validate the multiscale technique in a rigorous manner, comparisons with the so-called DNS (Direct Numerical Solution) approach are also presented. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/113861 Toro, Sebastian; Sánchez, Pablo Javier; Blanco, Pablo Javier; De Souza Neto, Eduardo Alberto; Huespe, Alfredo Edmundo; et al.; Multiscale formulation for material failure accounting for cohesive cracks at the macro and micro scales; Pergamon-Elsevier Science Ltd; International Journal of Plasticity; 76; 1-2016; 75-110 0749-6419 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/113861 |
identifier_str_mv |
Toro, Sebastian; Sánchez, Pablo Javier; Blanco, Pablo Javier; De Souza Neto, Eduardo Alberto; Huespe, Alfredo Edmundo; et al.; Multiscale formulation for material failure accounting for cohesive cracks at the macro and micro scales; Pergamon-Elsevier Science Ltd; International Journal of Plasticity; 76; 1-2016; 75-110 0749-6419 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0749641915001199 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ijplas.2015.07.001 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269183714263040 |
score |
13.13397 |