Crack-path field and strain-injection techniques in computational modeling of propagating material failure
- Autores
- Oliver, J.; Dias, I. F.; Huespe, Alfredo Edmundo
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The work presents two new numerical techniques devised for modeling propagating material failure, i.e. cracks in fracture mechanics or slip-lines in soil mechanics. The first one is termed crack-path-field technique and is conceived for the identification of the path of those cracks, or slip-lines, represented by strain-localization based solutions of the material failure problem. The second one is termed strain-injection, and consists of a procedure to insert, during specific stages of the simulation and in selected areas of the domain of analysis, goal oriented specific strain fields via mixed finite element formulations. In the approach, a first injection, of elemental constant strain modes (CSM) in quadrilaterals, is used, in combination of the crack-path-field technique, for obtaining reliable information that anticipates the position of the crack-path. Based on this information, in a subsequent stage, a discontinuous displacement mode (DDM) is efficiently injected, ensuring the required continuity of the crack-path across sides of contiguous elements. Combination of both techniques results in an efficient and robust procedure based on the staggered resolution of the crack-path-field and the mechanical failure problems. It provides the classical advantages of the “intra-elemental” methods for capturing complex propagating displacement discontinuities in coarse meshes, as E-FEM or X-FEM methods, with the non-code-invasive character of the crack-path-field technique. Numerical representative simulations of a wide range of benchmarks, in terms of the type of material and the failure problem, show the broad applicability, accuracy and robustness of the proposed methodology. The finite element code used for the simulations is open-source and available at http://www.cimne.com/compdesmat/.
Fil: Oliver, J.. Universidad Politecnica de Catalunya; España
Fil: Dias, I. F.. Laboratório Nacional de Engenharia Civil; Portugal
Fil: Huespe, Alfredo Edmundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina. Universidad Politecnica de Catalunya; España - Materia
-
Computational Material Failure
Crack-Path Field
Finite Elements with Embedded Discontinuities
Mixed Formulations
Fracture
Strong Discontinuities - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/19682
Ver los metadatos del registro completo
id |
CONICETDig_4e1b075d8c980f14ceda82c9e9e29a3f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/19682 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Crack-path field and strain-injection techniques in computational modeling of propagating material failureOliver, J.Dias, I. F.Huespe, Alfredo EdmundoComputational Material FailureCrack-Path FieldFinite Elements with Embedded DiscontinuitiesMixed FormulationsFractureStrong Discontinuitieshttps://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2The work presents two new numerical techniques devised for modeling propagating material failure, i.e. cracks in fracture mechanics or slip-lines in soil mechanics. The first one is termed crack-path-field technique and is conceived for the identification of the path of those cracks, or slip-lines, represented by strain-localization based solutions of the material failure problem. The second one is termed strain-injection, and consists of a procedure to insert, during specific stages of the simulation and in selected areas of the domain of analysis, goal oriented specific strain fields via mixed finite element formulations. In the approach, a first injection, of elemental constant strain modes (CSM) in quadrilaterals, is used, in combination of the crack-path-field technique, for obtaining reliable information that anticipates the position of the crack-path. Based on this information, in a subsequent stage, a discontinuous displacement mode (DDM) is efficiently injected, ensuring the required continuity of the crack-path across sides of contiguous elements. Combination of both techniques results in an efficient and robust procedure based on the staggered resolution of the crack-path-field and the mechanical failure problems. It provides the classical advantages of the “intra-elemental” methods for capturing complex propagating displacement discontinuities in coarse meshes, as E-FEM or X-FEM methods, with the non-code-invasive character of the crack-path-field technique. Numerical representative simulations of a wide range of benchmarks, in terms of the type of material and the failure problem, show the broad applicability, accuracy and robustness of the proposed methodology. The finite element code used for the simulations is open-source and available at http://www.cimne.com/compdesmat/.Fil: Oliver, J.. Universidad Politecnica de Catalunya; EspañaFil: Dias, I. F.. Laboratório Nacional de Engenharia Civil; PortugalFil: Huespe, Alfredo Edmundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina. Universidad Politecnica de Catalunya; EspañaElsevier2014-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/19682Oliver, J.; Dias, I. F.; Huespe, Alfredo Edmundo; Crack-path field and strain-injection techniques in computational modeling of propagating material failure; Elsevier; Computer Methods In Applied Mechanics And Engineering; 274; 1-2014; 289-3480045-7825CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.cma.2014.01.008info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0045782514000139?via%3Dihubinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:08:41Zoai:ri.conicet.gov.ar:11336/19682instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:08:41.492CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Crack-path field and strain-injection techniques in computational modeling of propagating material failure |
title |
Crack-path field and strain-injection techniques in computational modeling of propagating material failure |
spellingShingle |
Crack-path field and strain-injection techniques in computational modeling of propagating material failure Oliver, J. Computational Material Failure Crack-Path Field Finite Elements with Embedded Discontinuities Mixed Formulations Fracture Strong Discontinuities |
title_short |
Crack-path field and strain-injection techniques in computational modeling of propagating material failure |
title_full |
Crack-path field and strain-injection techniques in computational modeling of propagating material failure |
title_fullStr |
Crack-path field and strain-injection techniques in computational modeling of propagating material failure |
title_full_unstemmed |
Crack-path field and strain-injection techniques in computational modeling of propagating material failure |
title_sort |
Crack-path field and strain-injection techniques in computational modeling of propagating material failure |
dc.creator.none.fl_str_mv |
Oliver, J. Dias, I. F. Huespe, Alfredo Edmundo |
author |
Oliver, J. |
author_facet |
Oliver, J. Dias, I. F. Huespe, Alfredo Edmundo |
author_role |
author |
author2 |
Dias, I. F. Huespe, Alfredo Edmundo |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Computational Material Failure Crack-Path Field Finite Elements with Embedded Discontinuities Mixed Formulations Fracture Strong Discontinuities |
topic |
Computational Material Failure Crack-Path Field Finite Elements with Embedded Discontinuities Mixed Formulations Fracture Strong Discontinuities |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.3 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
The work presents two new numerical techniques devised for modeling propagating material failure, i.e. cracks in fracture mechanics or slip-lines in soil mechanics. The first one is termed crack-path-field technique and is conceived for the identification of the path of those cracks, or slip-lines, represented by strain-localization based solutions of the material failure problem. The second one is termed strain-injection, and consists of a procedure to insert, during specific stages of the simulation and in selected areas of the domain of analysis, goal oriented specific strain fields via mixed finite element formulations. In the approach, a first injection, of elemental constant strain modes (CSM) in quadrilaterals, is used, in combination of the crack-path-field technique, for obtaining reliable information that anticipates the position of the crack-path. Based on this information, in a subsequent stage, a discontinuous displacement mode (DDM) is efficiently injected, ensuring the required continuity of the crack-path across sides of contiguous elements. Combination of both techniques results in an efficient and robust procedure based on the staggered resolution of the crack-path-field and the mechanical failure problems. It provides the classical advantages of the “intra-elemental” methods for capturing complex propagating displacement discontinuities in coarse meshes, as E-FEM or X-FEM methods, with the non-code-invasive character of the crack-path-field technique. Numerical representative simulations of a wide range of benchmarks, in terms of the type of material and the failure problem, show the broad applicability, accuracy and robustness of the proposed methodology. The finite element code used for the simulations is open-source and available at http://www.cimne.com/compdesmat/. Fil: Oliver, J.. Universidad Politecnica de Catalunya; España Fil: Dias, I. F.. Laboratório Nacional de Engenharia Civil; Portugal Fil: Huespe, Alfredo Edmundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina. Universidad Politecnica de Catalunya; España |
description |
The work presents two new numerical techniques devised for modeling propagating material failure, i.e. cracks in fracture mechanics or slip-lines in soil mechanics. The first one is termed crack-path-field technique and is conceived for the identification of the path of those cracks, or slip-lines, represented by strain-localization based solutions of the material failure problem. The second one is termed strain-injection, and consists of a procedure to insert, during specific stages of the simulation and in selected areas of the domain of analysis, goal oriented specific strain fields via mixed finite element formulations. In the approach, a first injection, of elemental constant strain modes (CSM) in quadrilaterals, is used, in combination of the crack-path-field technique, for obtaining reliable information that anticipates the position of the crack-path. Based on this information, in a subsequent stage, a discontinuous displacement mode (DDM) is efficiently injected, ensuring the required continuity of the crack-path across sides of contiguous elements. Combination of both techniques results in an efficient and robust procedure based on the staggered resolution of the crack-path-field and the mechanical failure problems. It provides the classical advantages of the “intra-elemental” methods for capturing complex propagating displacement discontinuities in coarse meshes, as E-FEM or X-FEM methods, with the non-code-invasive character of the crack-path-field technique. Numerical representative simulations of a wide range of benchmarks, in terms of the type of material and the failure problem, show the broad applicability, accuracy and robustness of the proposed methodology. The finite element code used for the simulations is open-source and available at http://www.cimne.com/compdesmat/. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/19682 Oliver, J.; Dias, I. F.; Huespe, Alfredo Edmundo; Crack-path field and strain-injection techniques in computational modeling of propagating material failure; Elsevier; Computer Methods In Applied Mechanics And Engineering; 274; 1-2014; 289-348 0045-7825 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/19682 |
identifier_str_mv |
Oliver, J.; Dias, I. F.; Huespe, Alfredo Edmundo; Crack-path field and strain-injection techniques in computational modeling of propagating material failure; Elsevier; Computer Methods In Applied Mechanics And Engineering; 274; 1-2014; 289-348 0045-7825 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.cma.2014.01.008 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0045782514000139?via%3Dihub |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842270055037927424 |
score |
13.13397 |