High-performance model reduction techniques in computational multiscale homogenization
- Autores
- Hernandez, J. A.; Oliver, J.; Huespe, Alfredo Edmundo; Caicedo, M. A.; Cante, J. C.
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A novel model-order reduction technique for the solution of the fine-scale equilibrium problem appearing in computational homogenization is presented. The reduced set of empirical shape functions is obtained using a partitioned version — that accounts for the elastic/inelastic character of the solution — of the Proper Orthogonal Decomposition (POD). On the other hand, it is shown that the standard approach of replacing the nonaffine term by an interpolant constructed using only POD modes leads to ill-posed formulations. We demonstrate that this ill-posedness can be avoided by enriching the approximation space with the span of the gradient of the empirical shape functions. Furthermore, interpolation points are chosen guided, not only by accuracy requirements, but also by stability considerations. The approach is assessed in the homogenization of a highly complex porous metal material. Computed results show that computational complexity is independent of the size and geometrical complexity of the Representative Volume Element. The speedup factor is over three orders of magnitude — as compared with finite element analysis — whereas the maximum error in stresses is less than 10%.
Fil: Hernandez, J. A.. Technical University of Catalonia; España
Fil: Oliver, J.. Technical University of Catalonia; España
Fil: Huespe, Alfredo Edmundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones En Metodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones En Metodos Computacionales; Argentina. Universidad Politecnica de Catalunya; España
Fil: Caicedo, M. A.. Technical University of Catalonia; España
Fil: Cante, J. C.. Technical University of Catalonia; España - Materia
-
Multiscale
Homogenization
Model Reduction
High-Performance Reduced-Order Model
Hyperreduction
Pod - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/19675
Ver los metadatos del registro completo
id |
CONICETDig_f8cdff88f325c04d2f50c8ee50bf991b |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/19675 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
High-performance model reduction techniques in computational multiscale homogenizationHernandez, J. A.Oliver, J.Huespe, Alfredo EdmundoCaicedo, M. A.Cante, J. C.MultiscaleHomogenizationModel ReductionHigh-Performance Reduced-Order ModelHyperreductionPodhttps://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2A novel model-order reduction technique for the solution of the fine-scale equilibrium problem appearing in computational homogenization is presented. The reduced set of empirical shape functions is obtained using a partitioned version — that accounts for the elastic/inelastic character of the solution — of the Proper Orthogonal Decomposition (POD). On the other hand, it is shown that the standard approach of replacing the nonaffine term by an interpolant constructed using only POD modes leads to ill-posed formulations. We demonstrate that this ill-posedness can be avoided by enriching the approximation space with the span of the gradient of the empirical shape functions. Furthermore, interpolation points are chosen guided, not only by accuracy requirements, but also by stability considerations. The approach is assessed in the homogenization of a highly complex porous metal material. Computed results show that computational complexity is independent of the size and geometrical complexity of the Representative Volume Element. The speedup factor is over three orders of magnitude — as compared with finite element analysis — whereas the maximum error in stresses is less than 10%.Fil: Hernandez, J. A.. Technical University of Catalonia; EspañaFil: Oliver, J.. Technical University of Catalonia; EspañaFil: Huespe, Alfredo Edmundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones En Metodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones En Metodos Computacionales; Argentina. Universidad Politecnica de Catalunya; EspañaFil: Caicedo, M. A.. Technical University of Catalonia; EspañaFil: Cante, J. C.. Technical University of Catalonia; EspañaElsevier2014-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/19675Hernandez, J. A.; Oliver, J.; Huespe, Alfredo Edmundo; Caicedo, M. A.; Cante, J. C.; High-performance model reduction techniques in computational multiscale homogenization; Elsevier; Computer Methods In Applied Mechanics And Engineering; 276; 3-2014; 149-1890045-7825CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.cma.2014.03.011info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0045782514000978?via%3Dihubinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:37:40Zoai:ri.conicet.gov.ar:11336/19675instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:37:41.024CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
High-performance model reduction techniques in computational multiscale homogenization |
title |
High-performance model reduction techniques in computational multiscale homogenization |
spellingShingle |
High-performance model reduction techniques in computational multiscale homogenization Hernandez, J. A. Multiscale Homogenization Model Reduction High-Performance Reduced-Order Model Hyperreduction Pod |
title_short |
High-performance model reduction techniques in computational multiscale homogenization |
title_full |
High-performance model reduction techniques in computational multiscale homogenization |
title_fullStr |
High-performance model reduction techniques in computational multiscale homogenization |
title_full_unstemmed |
High-performance model reduction techniques in computational multiscale homogenization |
title_sort |
High-performance model reduction techniques in computational multiscale homogenization |
dc.creator.none.fl_str_mv |
Hernandez, J. A. Oliver, J. Huespe, Alfredo Edmundo Caicedo, M. A. Cante, J. C. |
author |
Hernandez, J. A. |
author_facet |
Hernandez, J. A. Oliver, J. Huespe, Alfredo Edmundo Caicedo, M. A. Cante, J. C. |
author_role |
author |
author2 |
Oliver, J. Huespe, Alfredo Edmundo Caicedo, M. A. Cante, J. C. |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Multiscale Homogenization Model Reduction High-Performance Reduced-Order Model Hyperreduction Pod |
topic |
Multiscale Homogenization Model Reduction High-Performance Reduced-Order Model Hyperreduction Pod |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.3 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
A novel model-order reduction technique for the solution of the fine-scale equilibrium problem appearing in computational homogenization is presented. The reduced set of empirical shape functions is obtained using a partitioned version — that accounts for the elastic/inelastic character of the solution — of the Proper Orthogonal Decomposition (POD). On the other hand, it is shown that the standard approach of replacing the nonaffine term by an interpolant constructed using only POD modes leads to ill-posed formulations. We demonstrate that this ill-posedness can be avoided by enriching the approximation space with the span of the gradient of the empirical shape functions. Furthermore, interpolation points are chosen guided, not only by accuracy requirements, but also by stability considerations. The approach is assessed in the homogenization of a highly complex porous metal material. Computed results show that computational complexity is independent of the size and geometrical complexity of the Representative Volume Element. The speedup factor is over three orders of magnitude — as compared with finite element analysis — whereas the maximum error in stresses is less than 10%. Fil: Hernandez, J. A.. Technical University of Catalonia; España Fil: Oliver, J.. Technical University of Catalonia; España Fil: Huespe, Alfredo Edmundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones En Metodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones En Metodos Computacionales; Argentina. Universidad Politecnica de Catalunya; España Fil: Caicedo, M. A.. Technical University of Catalonia; España Fil: Cante, J. C.. Technical University of Catalonia; España |
description |
A novel model-order reduction technique for the solution of the fine-scale equilibrium problem appearing in computational homogenization is presented. The reduced set of empirical shape functions is obtained using a partitioned version — that accounts for the elastic/inelastic character of the solution — of the Proper Orthogonal Decomposition (POD). On the other hand, it is shown that the standard approach of replacing the nonaffine term by an interpolant constructed using only POD modes leads to ill-posed formulations. We demonstrate that this ill-posedness can be avoided by enriching the approximation space with the span of the gradient of the empirical shape functions. Furthermore, interpolation points are chosen guided, not only by accuracy requirements, but also by stability considerations. The approach is assessed in the homogenization of a highly complex porous metal material. Computed results show that computational complexity is independent of the size and geometrical complexity of the Representative Volume Element. The speedup factor is over three orders of magnitude — as compared with finite element analysis — whereas the maximum error in stresses is less than 10%. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/19675 Hernandez, J. A.; Oliver, J.; Huespe, Alfredo Edmundo; Caicedo, M. A.; Cante, J. C.; High-performance model reduction techniques in computational multiscale homogenization; Elsevier; Computer Methods In Applied Mechanics And Engineering; 276; 3-2014; 149-189 0045-7825 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/19675 |
identifier_str_mv |
Hernandez, J. A.; Oliver, J.; Huespe, Alfredo Edmundo; Caicedo, M. A.; Cante, J. C.; High-performance model reduction techniques in computational multiscale homogenization; Elsevier; Computer Methods In Applied Mechanics And Engineering; 276; 3-2014; 149-189 0045-7825 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.cma.2014.03.011 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0045782514000978?via%3Dihub |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614397364797440 |
score |
13.070432 |