Thermomechanical Multiscale Constitutive Modeling: Accounting for Microstructural Thermal Effects

Autores
Blanco, Pablo Javier; Giusti, Sebastian Miguel
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this work we present a thermomechanical multiscale constitutive model for materials with microstructure. In these materials thermal effects at microscale have an impact on the effective macroscopic stress. As a result, it turns out that the homogenized stress depends upon the macroscopic temperature and its gradient. In order to allow this interplay to be thermodynamically valid, we resort to a macroscopic extended thermodynamics whose elements are derived from the microscopic behavior using homogenization concepts. Hence, the thermodynamics implications of this new class of multiscale models are discussed. A variational approach based on the Hill–Mandel Principle of Macro-homogeneity, and which makes use of the volume averaging concept over a local representative volume element (RVE), is employed to derive the thermal and mechanical equilibrium problems at the RVE level and the corresponding homogenization expressions for the effective heat flux and stress. The material behavior at the RVE level is described through standard phenomenological constitutive models. To sum up, the novel contribution of the model presented here is that it allows to include the microscopic temperature fluctuation field, obtained from the multiscale thermal analysis, in the micro-mechanical problem at the RVE level while keeping thermodynamic consistency.
Fil: Blanco, Pablo Javier. Laboratório Nacional de Computação Científica. Petropolis; Brasil
Fil: Giusti, Sebastian Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional. Facultad Regional Córdoba; Argentina
Materia
Multiscale Modeling
Elasticity Tensor
Thermal Conductivity Tensor
Thermal Expansion Tensor
Non-Standard Thermodynamics
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/33636

id CONICETDig_9293ebfd366711d97ef6717cd8abee88
oai_identifier_str oai:ri.conicet.gov.ar:11336/33636
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Thermomechanical Multiscale Constitutive Modeling: Accounting for Microstructural Thermal EffectsBlanco, Pablo JavierGiusti, Sebastian MiguelMultiscale ModelingElasticity TensorThermal Conductivity TensorThermal Expansion TensorNon-Standard Thermodynamicshttps://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2In this work we present a thermomechanical multiscale constitutive model for materials with microstructure. In these materials thermal effects at microscale have an impact on the effective macroscopic stress. As a result, it turns out that the homogenized stress depends upon the macroscopic temperature and its gradient. In order to allow this interplay to be thermodynamically valid, we resort to a macroscopic extended thermodynamics whose elements are derived from the microscopic behavior using homogenization concepts. Hence, the thermodynamics implications of this new class of multiscale models are discussed. A variational approach based on the Hill–Mandel Principle of Macro-homogeneity, and which makes use of the volume averaging concept over a local representative volume element (RVE), is employed to derive the thermal and mechanical equilibrium problems at the RVE level and the corresponding homogenization expressions for the effective heat flux and stress. The material behavior at the RVE level is described through standard phenomenological constitutive models. To sum up, the novel contribution of the model presented here is that it allows to include the microscopic temperature fluctuation field, obtained from the multiscale thermal analysis, in the micro-mechanical problem at the RVE level while keeping thermodynamic consistency.Fil: Blanco, Pablo Javier. Laboratório Nacional de Computação Científica. Petropolis; BrasilFil: Giusti, Sebastian Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional. Facultad Regional Córdoba; ArgentinaSpringer2014-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/33636Giusti, Sebastian Miguel; Blanco, Pablo Javier; Thermomechanical Multiscale Constitutive Modeling: Accounting for Microstructural Thermal Effects; Springer; Journal Of Elasticity; 115; 1; 2-2014; 27-460374-3535CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s10659-013-9445-2info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10659-013-9445-2info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:34:26Zoai:ri.conicet.gov.ar:11336/33636instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:34:26.655CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Thermomechanical Multiscale Constitutive Modeling: Accounting for Microstructural Thermal Effects
title Thermomechanical Multiscale Constitutive Modeling: Accounting for Microstructural Thermal Effects
spellingShingle Thermomechanical Multiscale Constitutive Modeling: Accounting for Microstructural Thermal Effects
Blanco, Pablo Javier
Multiscale Modeling
Elasticity Tensor
Thermal Conductivity Tensor
Thermal Expansion Tensor
Non-Standard Thermodynamics
title_short Thermomechanical Multiscale Constitutive Modeling: Accounting for Microstructural Thermal Effects
title_full Thermomechanical Multiscale Constitutive Modeling: Accounting for Microstructural Thermal Effects
title_fullStr Thermomechanical Multiscale Constitutive Modeling: Accounting for Microstructural Thermal Effects
title_full_unstemmed Thermomechanical Multiscale Constitutive Modeling: Accounting for Microstructural Thermal Effects
title_sort Thermomechanical Multiscale Constitutive Modeling: Accounting for Microstructural Thermal Effects
dc.creator.none.fl_str_mv Blanco, Pablo Javier
Giusti, Sebastian Miguel
author Blanco, Pablo Javier
author_facet Blanco, Pablo Javier
Giusti, Sebastian Miguel
author_role author
author2 Giusti, Sebastian Miguel
author2_role author
dc.subject.none.fl_str_mv Multiscale Modeling
Elasticity Tensor
Thermal Conductivity Tensor
Thermal Expansion Tensor
Non-Standard Thermodynamics
topic Multiscale Modeling
Elasticity Tensor
Thermal Conductivity Tensor
Thermal Expansion Tensor
Non-Standard Thermodynamics
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.3
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv In this work we present a thermomechanical multiscale constitutive model for materials with microstructure. In these materials thermal effects at microscale have an impact on the effective macroscopic stress. As a result, it turns out that the homogenized stress depends upon the macroscopic temperature and its gradient. In order to allow this interplay to be thermodynamically valid, we resort to a macroscopic extended thermodynamics whose elements are derived from the microscopic behavior using homogenization concepts. Hence, the thermodynamics implications of this new class of multiscale models are discussed. A variational approach based on the Hill–Mandel Principle of Macro-homogeneity, and which makes use of the volume averaging concept over a local representative volume element (RVE), is employed to derive the thermal and mechanical equilibrium problems at the RVE level and the corresponding homogenization expressions for the effective heat flux and stress. The material behavior at the RVE level is described through standard phenomenological constitutive models. To sum up, the novel contribution of the model presented here is that it allows to include the microscopic temperature fluctuation field, obtained from the multiscale thermal analysis, in the micro-mechanical problem at the RVE level while keeping thermodynamic consistency.
Fil: Blanco, Pablo Javier. Laboratório Nacional de Computação Científica. Petropolis; Brasil
Fil: Giusti, Sebastian Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional. Facultad Regional Córdoba; Argentina
description In this work we present a thermomechanical multiscale constitutive model for materials with microstructure. In these materials thermal effects at microscale have an impact on the effective macroscopic stress. As a result, it turns out that the homogenized stress depends upon the macroscopic temperature and its gradient. In order to allow this interplay to be thermodynamically valid, we resort to a macroscopic extended thermodynamics whose elements are derived from the microscopic behavior using homogenization concepts. Hence, the thermodynamics implications of this new class of multiscale models are discussed. A variational approach based on the Hill–Mandel Principle of Macro-homogeneity, and which makes use of the volume averaging concept over a local representative volume element (RVE), is employed to derive the thermal and mechanical equilibrium problems at the RVE level and the corresponding homogenization expressions for the effective heat flux and stress. The material behavior at the RVE level is described through standard phenomenological constitutive models. To sum up, the novel contribution of the model presented here is that it allows to include the microscopic temperature fluctuation field, obtained from the multiscale thermal analysis, in the micro-mechanical problem at the RVE level while keeping thermodynamic consistency.
publishDate 2014
dc.date.none.fl_str_mv 2014-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/33636
Giusti, Sebastian Miguel; Blanco, Pablo Javier; Thermomechanical Multiscale Constitutive Modeling: Accounting for Microstructural Thermal Effects; Springer; Journal Of Elasticity; 115; 1; 2-2014; 27-46
0374-3535
CONICET Digital
CONICET
url http://hdl.handle.net/11336/33636
identifier_str_mv Giusti, Sebastian Miguel; Blanco, Pablo Javier; Thermomechanical Multiscale Constitutive Modeling: Accounting for Microstructural Thermal Effects; Springer; Journal Of Elasticity; 115; 1; 2-2014; 27-46
0374-3535
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1007/s10659-013-9445-2
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10659-013-9445-2
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614361574801408
score 13.070432