Quantifying transcription factor binding dynamics at the single-molecule level in live cells
- Autores
- Presman, Diego Martin; Ball, David A.; Paakinaho, Ville; Grimm, Jonathan B.; Lavis, Luke D.; Karpova, Tatiana S.; Hager, Gordon L.
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Progressive, technological achievements in the quantitative fluorescence microscopy field are allowing researches from many different areas to start unraveling the dynamic intricacies of biological processes inside living cells. From super-resolution microscopy techniques to tracking of individual proteins, fluorescence microscopy is changing our perspective on how the cell works. Fortunately, a growing number of research groups are exploring single-molecule studies in living cells. However, no clear consensus exists on several key aspects of the technique such as image acquisition conditions, or analysis of the obtained data. Here, we describe a detailed approach to perform single-molecule tracking (SMT) of transcription factors in living cells to obtain key binding characteristics, namely their residence time and bound fractions. We discuss different types of fluorophores, labeling density, microscope, cameras, data acquisition, and data analysis. Using the glucocorticoid receptor as a model transcription factor, we compared alternate tags (GFP, mEOS, HaloTag, SNAP-tag, CLIP-tag) for potential multicolor applications. We also examine different methods to extract the dissociation rates and compare them with simulated data. Finally, we discuss several challenges that this exciting technique still faces.
Fil: Presman, Diego Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina. National Institutes of Health; Estados Unidos
Fil: Ball, David A.. National Institutes of Health; Estados Unidos
Fil: Paakinaho, Ville. National Institutes of Health; Estados Unidos
Fil: Grimm, Jonathan B.. Howard Hughes Medical Institute; Estados Unidos
Fil: Lavis, Luke D.. Howard Hughes Medical Institute; Estados Unidos
Fil: Karpova, Tatiana S.. National Institutes of Health; Estados Unidos
Fil: Hager, Gordon L.. National Institutes of Health; Estados Unidos - Materia
-
DNA BINDING
DYNAMICS
FLUORESCENCE MICROSCOPY
GLUCOCORTICOID RECEPTOR
SINGLE-MOLECULE TRACKING
TRANSCRIPTION FACTOR - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/64420
Ver los metadatos del registro completo
id |
CONICETDig_388812089c44ed85216bdc69e2510070 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/64420 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Quantifying transcription factor binding dynamics at the single-molecule level in live cellsPresman, Diego MartinBall, David A.Paakinaho, VilleGrimm, Jonathan B.Lavis, Luke D.Karpova, Tatiana S.Hager, Gordon L.DNA BINDINGDYNAMICSFLUORESCENCE MICROSCOPYGLUCOCORTICOID RECEPTORSINGLE-MOLECULE TRACKINGTRANSCRIPTION FACTORhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Progressive, technological achievements in the quantitative fluorescence microscopy field are allowing researches from many different areas to start unraveling the dynamic intricacies of biological processes inside living cells. From super-resolution microscopy techniques to tracking of individual proteins, fluorescence microscopy is changing our perspective on how the cell works. Fortunately, a growing number of research groups are exploring single-molecule studies in living cells. However, no clear consensus exists on several key aspects of the technique such as image acquisition conditions, or analysis of the obtained data. Here, we describe a detailed approach to perform single-molecule tracking (SMT) of transcription factors in living cells to obtain key binding characteristics, namely their residence time and bound fractions. We discuss different types of fluorophores, labeling density, microscope, cameras, data acquisition, and data analysis. Using the glucocorticoid receptor as a model transcription factor, we compared alternate tags (GFP, mEOS, HaloTag, SNAP-tag, CLIP-tag) for potential multicolor applications. We also examine different methods to extract the dissociation rates and compare them with simulated data. Finally, we discuss several challenges that this exciting technique still faces.Fil: Presman, Diego Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina. National Institutes of Health; Estados UnidosFil: Ball, David A.. National Institutes of Health; Estados UnidosFil: Paakinaho, Ville. National Institutes of Health; Estados UnidosFil: Grimm, Jonathan B.. Howard Hughes Medical Institute; Estados UnidosFil: Lavis, Luke D.. Howard Hughes Medical Institute; Estados UnidosFil: Karpova, Tatiana S.. National Institutes of Health; Estados UnidosFil: Hager, Gordon L.. National Institutes of Health; Estados UnidosAcademic Press Inc Elsevier Science2017-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/64420Presman, Diego Martin; Ball, David A.; Paakinaho, Ville; Grimm, Jonathan B.; Lavis, Luke D.; et al.; Quantifying transcription factor binding dynamics at the single-molecule level in live cells; Academic Press Inc Elsevier Science; Methods; 123; 7-2017; 76-881046-2023CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.ymeth.2017.03.014info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1046202316304509info:eu-repo/semantics/altIdentifier/url/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5522764/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:53:19Zoai:ri.conicet.gov.ar:11336/64420instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:53:19.352CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Quantifying transcription factor binding dynamics at the single-molecule level in live cells |
title |
Quantifying transcription factor binding dynamics at the single-molecule level in live cells |
spellingShingle |
Quantifying transcription factor binding dynamics at the single-molecule level in live cells Presman, Diego Martin DNA BINDING DYNAMICS FLUORESCENCE MICROSCOPY GLUCOCORTICOID RECEPTOR SINGLE-MOLECULE TRACKING TRANSCRIPTION FACTOR |
title_short |
Quantifying transcription factor binding dynamics at the single-molecule level in live cells |
title_full |
Quantifying transcription factor binding dynamics at the single-molecule level in live cells |
title_fullStr |
Quantifying transcription factor binding dynamics at the single-molecule level in live cells |
title_full_unstemmed |
Quantifying transcription factor binding dynamics at the single-molecule level in live cells |
title_sort |
Quantifying transcription factor binding dynamics at the single-molecule level in live cells |
dc.creator.none.fl_str_mv |
Presman, Diego Martin Ball, David A. Paakinaho, Ville Grimm, Jonathan B. Lavis, Luke D. Karpova, Tatiana S. Hager, Gordon L. |
author |
Presman, Diego Martin |
author_facet |
Presman, Diego Martin Ball, David A. Paakinaho, Ville Grimm, Jonathan B. Lavis, Luke D. Karpova, Tatiana S. Hager, Gordon L. |
author_role |
author |
author2 |
Ball, David A. Paakinaho, Ville Grimm, Jonathan B. Lavis, Luke D. Karpova, Tatiana S. Hager, Gordon L. |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
DNA BINDING DYNAMICS FLUORESCENCE MICROSCOPY GLUCOCORTICOID RECEPTOR SINGLE-MOLECULE TRACKING TRANSCRIPTION FACTOR |
topic |
DNA BINDING DYNAMICS FLUORESCENCE MICROSCOPY GLUCOCORTICOID RECEPTOR SINGLE-MOLECULE TRACKING TRANSCRIPTION FACTOR |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Progressive, technological achievements in the quantitative fluorescence microscopy field are allowing researches from many different areas to start unraveling the dynamic intricacies of biological processes inside living cells. From super-resolution microscopy techniques to tracking of individual proteins, fluorescence microscopy is changing our perspective on how the cell works. Fortunately, a growing number of research groups are exploring single-molecule studies in living cells. However, no clear consensus exists on several key aspects of the technique such as image acquisition conditions, or analysis of the obtained data. Here, we describe a detailed approach to perform single-molecule tracking (SMT) of transcription factors in living cells to obtain key binding characteristics, namely their residence time and bound fractions. We discuss different types of fluorophores, labeling density, microscope, cameras, data acquisition, and data analysis. Using the glucocorticoid receptor as a model transcription factor, we compared alternate tags (GFP, mEOS, HaloTag, SNAP-tag, CLIP-tag) for potential multicolor applications. We also examine different methods to extract the dissociation rates and compare them with simulated data. Finally, we discuss several challenges that this exciting technique still faces. Fil: Presman, Diego Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina. National Institutes of Health; Estados Unidos Fil: Ball, David A.. National Institutes of Health; Estados Unidos Fil: Paakinaho, Ville. National Institutes of Health; Estados Unidos Fil: Grimm, Jonathan B.. Howard Hughes Medical Institute; Estados Unidos Fil: Lavis, Luke D.. Howard Hughes Medical Institute; Estados Unidos Fil: Karpova, Tatiana S.. National Institutes of Health; Estados Unidos Fil: Hager, Gordon L.. National Institutes of Health; Estados Unidos |
description |
Progressive, technological achievements in the quantitative fluorescence microscopy field are allowing researches from many different areas to start unraveling the dynamic intricacies of biological processes inside living cells. From super-resolution microscopy techniques to tracking of individual proteins, fluorescence microscopy is changing our perspective on how the cell works. Fortunately, a growing number of research groups are exploring single-molecule studies in living cells. However, no clear consensus exists on several key aspects of the technique such as image acquisition conditions, or analysis of the obtained data. Here, we describe a detailed approach to perform single-molecule tracking (SMT) of transcription factors in living cells to obtain key binding characteristics, namely their residence time and bound fractions. We discuss different types of fluorophores, labeling density, microscope, cameras, data acquisition, and data analysis. Using the glucocorticoid receptor as a model transcription factor, we compared alternate tags (GFP, mEOS, HaloTag, SNAP-tag, CLIP-tag) for potential multicolor applications. We also examine different methods to extract the dissociation rates and compare them with simulated data. Finally, we discuss several challenges that this exciting technique still faces. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/64420 Presman, Diego Martin; Ball, David A.; Paakinaho, Ville; Grimm, Jonathan B.; Lavis, Luke D.; et al.; Quantifying transcription factor binding dynamics at the single-molecule level in live cells; Academic Press Inc Elsevier Science; Methods; 123; 7-2017; 76-88 1046-2023 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/64420 |
identifier_str_mv |
Presman, Diego Martin; Ball, David A.; Paakinaho, Ville; Grimm, Jonathan B.; Lavis, Luke D.; et al.; Quantifying transcription factor binding dynamics at the single-molecule level in live cells; Academic Press Inc Elsevier Science; Methods; 123; 7-2017; 76-88 1046-2023 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ymeth.2017.03.014 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1046202316304509 info:eu-repo/semantics/altIdentifier/url/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5522764/ |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269215590973440 |
score |
13.13397 |