Power-law behaviour of transcription factor dynamics at the single-molecule level implies a continuum affinity model
- Autores
- Garcia, David A.; Fettweis, Gregory; Presman, Diego Martin; Paakinaho, Ville; Jarzynski, Christopher; Upadhyaya, Arpita; Hager, Gordon L.
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Single-molecule tracking (SMT) allows the study of transcription factor (TF) dynamics in the nucleus, giving important information regarding the diffusion and binding behavior of these proteins in the nuclear environment. Dwell time distributions obtained by SMT for most TFs appear to follow bi-exponential behavior. This has been ascribed to two discrete populations of TFs-one non-specifically bound to chromatin and another specifically bound to target sites, as implied by decades of biochemical studies. However, emerging studies suggest alternate models for dwell-time distributions, indicating the existence of more than two populations of TFs (multi-exponential distribution), or even the absence of discrete states altogether (power-law distribution). Here, we present an analytical pipeline to evaluate which model best explains SMT data. We find that a broad spectrum of TFs (including glucocorticoid receptor, oestrogen receptor, FOXA1, CTCF) follow a power-law distribution of dwell-times, blurring the temporal line between non-specific and specific binding, suggesting that productive binding may involve longer binding events than previously believed. From these observations, we propose a continuum of affinities model to explain TF dynamics, that is consistent with complex interactions of TFs with multiple nuclear domains as well as binding and searching on the chromatin template.
Fil: Garcia, David A.. National Institutes of Health; Estados Unidos
Fil: Fettweis, Gregory. National Institutes of Health; Estados Unidos
Fil: Presman, Diego Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina
Fil: Paakinaho, Ville. University Of Eastern Finland.; Finlandia
Fil: Jarzynski, Christopher. University of Maryland; Estados Unidos
Fil: Upadhyaya, Arpita. University of Maryland; Estados Unidos
Fil: Hager, Gordon L.. National Institutes of Health; Estados Unidos - Materia
-
POWER-LAW
TRANSCRIPTION FACTOR
GLUCOCORTICOID RECEPTOR - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/175225
Ver los metadatos del registro completo
id |
CONICETDig_4d86f43d3fb948b1c994ceb51cd92ccf |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/175225 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Power-law behaviour of transcription factor dynamics at the single-molecule level implies a continuum affinity modelGarcia, David A.Fettweis, GregoryPresman, Diego MartinPaakinaho, VilleJarzynski, ChristopherUpadhyaya, ArpitaHager, Gordon L.POWER-LAWTRANSCRIPTION FACTORGLUCOCORTICOID RECEPTORhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Single-molecule tracking (SMT) allows the study of transcription factor (TF) dynamics in the nucleus, giving important information regarding the diffusion and binding behavior of these proteins in the nuclear environment. Dwell time distributions obtained by SMT for most TFs appear to follow bi-exponential behavior. This has been ascribed to two discrete populations of TFs-one non-specifically bound to chromatin and another specifically bound to target sites, as implied by decades of biochemical studies. However, emerging studies suggest alternate models for dwell-time distributions, indicating the existence of more than two populations of TFs (multi-exponential distribution), or even the absence of discrete states altogether (power-law distribution). Here, we present an analytical pipeline to evaluate which model best explains SMT data. We find that a broad spectrum of TFs (including glucocorticoid receptor, oestrogen receptor, FOXA1, CTCF) follow a power-law distribution of dwell-times, blurring the temporal line between non-specific and specific binding, suggesting that productive binding may involve longer binding events than previously believed. From these observations, we propose a continuum of affinities model to explain TF dynamics, that is consistent with complex interactions of TFs with multiple nuclear domains as well as binding and searching on the chromatin template.Fil: Garcia, David A.. National Institutes of Health; Estados UnidosFil: Fettweis, Gregory. National Institutes of Health; Estados UnidosFil: Presman, Diego Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Paakinaho, Ville. University Of Eastern Finland.; FinlandiaFil: Jarzynski, Christopher. University of Maryland; Estados UnidosFil: Upadhyaya, Arpita. University of Maryland; Estados UnidosFil: Hager, Gordon L.. National Institutes of Health; Estados UnidosOxford University Press2021-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/175225Garcia, David A.; Fettweis, Gregory; Presman, Diego Martin; Paakinaho, Ville; Jarzynski, Christopher; et al.; Power-law behaviour of transcription factor dynamics at the single-molecule level implies a continuum affinity model; Oxford University Press; Nucleic Acids Research; 49; 12; 7-2021; 6605-66201362-4962CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1093/nar/gkab072info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:05:17Zoai:ri.conicet.gov.ar:11336/175225instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:05:17.45CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Power-law behaviour of transcription factor dynamics at the single-molecule level implies a continuum affinity model |
title |
Power-law behaviour of transcription factor dynamics at the single-molecule level implies a continuum affinity model |
spellingShingle |
Power-law behaviour of transcription factor dynamics at the single-molecule level implies a continuum affinity model Garcia, David A. POWER-LAW TRANSCRIPTION FACTOR GLUCOCORTICOID RECEPTOR |
title_short |
Power-law behaviour of transcription factor dynamics at the single-molecule level implies a continuum affinity model |
title_full |
Power-law behaviour of transcription factor dynamics at the single-molecule level implies a continuum affinity model |
title_fullStr |
Power-law behaviour of transcription factor dynamics at the single-molecule level implies a continuum affinity model |
title_full_unstemmed |
Power-law behaviour of transcription factor dynamics at the single-molecule level implies a continuum affinity model |
title_sort |
Power-law behaviour of transcription factor dynamics at the single-molecule level implies a continuum affinity model |
dc.creator.none.fl_str_mv |
Garcia, David A. Fettweis, Gregory Presman, Diego Martin Paakinaho, Ville Jarzynski, Christopher Upadhyaya, Arpita Hager, Gordon L. |
author |
Garcia, David A. |
author_facet |
Garcia, David A. Fettweis, Gregory Presman, Diego Martin Paakinaho, Ville Jarzynski, Christopher Upadhyaya, Arpita Hager, Gordon L. |
author_role |
author |
author2 |
Fettweis, Gregory Presman, Diego Martin Paakinaho, Ville Jarzynski, Christopher Upadhyaya, Arpita Hager, Gordon L. |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
POWER-LAW TRANSCRIPTION FACTOR GLUCOCORTICOID RECEPTOR |
topic |
POWER-LAW TRANSCRIPTION FACTOR GLUCOCORTICOID RECEPTOR |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Single-molecule tracking (SMT) allows the study of transcription factor (TF) dynamics in the nucleus, giving important information regarding the diffusion and binding behavior of these proteins in the nuclear environment. Dwell time distributions obtained by SMT for most TFs appear to follow bi-exponential behavior. This has been ascribed to two discrete populations of TFs-one non-specifically bound to chromatin and another specifically bound to target sites, as implied by decades of biochemical studies. However, emerging studies suggest alternate models for dwell-time distributions, indicating the existence of more than two populations of TFs (multi-exponential distribution), or even the absence of discrete states altogether (power-law distribution). Here, we present an analytical pipeline to evaluate which model best explains SMT data. We find that a broad spectrum of TFs (including glucocorticoid receptor, oestrogen receptor, FOXA1, CTCF) follow a power-law distribution of dwell-times, blurring the temporal line between non-specific and specific binding, suggesting that productive binding may involve longer binding events than previously believed. From these observations, we propose a continuum of affinities model to explain TF dynamics, that is consistent with complex interactions of TFs with multiple nuclear domains as well as binding and searching on the chromatin template. Fil: Garcia, David A.. National Institutes of Health; Estados Unidos Fil: Fettweis, Gregory. National Institutes of Health; Estados Unidos Fil: Presman, Diego Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina Fil: Paakinaho, Ville. University Of Eastern Finland.; Finlandia Fil: Jarzynski, Christopher. University of Maryland; Estados Unidos Fil: Upadhyaya, Arpita. University of Maryland; Estados Unidos Fil: Hager, Gordon L.. National Institutes of Health; Estados Unidos |
description |
Single-molecule tracking (SMT) allows the study of transcription factor (TF) dynamics in the nucleus, giving important information regarding the diffusion and binding behavior of these proteins in the nuclear environment. Dwell time distributions obtained by SMT for most TFs appear to follow bi-exponential behavior. This has been ascribed to two discrete populations of TFs-one non-specifically bound to chromatin and another specifically bound to target sites, as implied by decades of biochemical studies. However, emerging studies suggest alternate models for dwell-time distributions, indicating the existence of more than two populations of TFs (multi-exponential distribution), or even the absence of discrete states altogether (power-law distribution). Here, we present an analytical pipeline to evaluate which model best explains SMT data. We find that a broad spectrum of TFs (including glucocorticoid receptor, oestrogen receptor, FOXA1, CTCF) follow a power-law distribution of dwell-times, blurring the temporal line between non-specific and specific binding, suggesting that productive binding may involve longer binding events than previously believed. From these observations, we propose a continuum of affinities model to explain TF dynamics, that is consistent with complex interactions of TFs with multiple nuclear domains as well as binding and searching on the chromatin template. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/175225 Garcia, David A.; Fettweis, Gregory; Presman, Diego Martin; Paakinaho, Ville; Jarzynski, Christopher; et al.; Power-law behaviour of transcription factor dynamics at the single-molecule level implies a continuum affinity model; Oxford University Press; Nucleic Acids Research; 49; 12; 7-2021; 6605-6620 1362-4962 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/175225 |
identifier_str_mv |
Garcia, David A.; Fettweis, Gregory; Presman, Diego Martin; Paakinaho, Ville; Jarzynski, Christopher; et al.; Power-law behaviour of transcription factor dynamics at the single-molecule level implies a continuum affinity model; Oxford University Press; Nucleic Acids Research; 49; 12; 7-2021; 6605-6620 1362-4962 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1093/nar/gkab072 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Oxford University Press |
publisher.none.fl_str_mv |
Oxford University Press |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269903252357120 |
score |
13.13397 |