Microscopía 3D por barrido orbital y modulación radial
- Autores
- Zaza, María Cecilia; Gabriel, Manuela; Estrada, Laura Cecilia
- Año de publicación
- 2018
- Idioma
- español castellano
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- En este trabajo presentamos la implementación de un novedoso método de microscopía 3D basado en el barrido orbital de un haz de excitación alrededor de la estructura de interés. Esta tecnología es capaz de producir imágenes tridimensionales de estructuras en movimiento con resolución nanométrica y en pocas decenas de milisegundos. Dado que la intensidad de luz emitida por un objeto fluorescente depende fuertemente de la distancia entre el haz de excitación y la superficie del mismo, modulando la distancia haz-objeto, y conociendo el perfil del haz de excitación, es posible recuperar la forma del objeto de interés a partir la señal de fluorescencia colectada. El método de nSPIRO (nanoScale Precise Imaging by Rapid beam Oscillation) utiliza la oscilación rápida (en los milisegundos) de una haz de luz enfocado alrededor del objeto para obtener una respuesta oscilatoria cuya amplitud depende únicamente de la distancia a la superficie del objeto. En este trabajo mostramos simulaciones numéricas que permiten evaluar el alcance y las limitaciones del método, mostramos su implementación en un microscopio por absorción de dos fotones, y finalmente lo aplicamos al estudio de raíces de Arabidopsis Thaliana en condiciones fisiológicas.
In this work, we present an alternative imaging method based on the orbital scanning of a laser excitation beam around the object of interest. This technology is capable of producing tridimensional images of fluorescent structures with nanometrical resolution in a few milliseconds. The method relies on the fact that when the excitation beam is near a fluorescent object, the emitted light from the object depends on the distance between its surface and the excitation beam. By modulating the distance between the beam and the object and taking into account the nonlinearity of the excitation intensity profile, it is possible to obtain an oscillating response whose amplitude depends only on the distance to the surface of the object. Given the fact that the excitation beam is always near the structure of interest, it is possible to measure moving specimens. Here, we present tridimensional reconstructions of Arabidopsis Thaliana roots which are ~ 50 μm in length and ~ 5 μm in diameter.
Fil: Zaza, María Cecilia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Gabriel, Manuela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Estrada, Laura Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina - Materia
-
FLUORESCENCE
MICROSCOPY
SINGLE PARTICLE TRACKING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/98848
Ver los metadatos del registro completo
id |
CONICETDig_1f6d66de8d961532f97d52cbee1e9dd1 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/98848 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Microscopía 3D por barrido orbital y modulación radial3D microscopy by orbital radially modulated scanZaza, María CeciliaGabriel, ManuelaEstrada, Laura CeciliaFLUORESCENCEMICROSCOPYSINGLE PARTICLE TRACKINGhttps://purl.org/becyt/ford/2.10https://purl.org/becyt/ford/2En este trabajo presentamos la implementación de un novedoso método de microscopía 3D basado en el barrido orbital de un haz de excitación alrededor de la estructura de interés. Esta tecnología es capaz de producir imágenes tridimensionales de estructuras en movimiento con resolución nanométrica y en pocas decenas de milisegundos. Dado que la intensidad de luz emitida por un objeto fluorescente depende fuertemente de la distancia entre el haz de excitación y la superficie del mismo, modulando la distancia haz-objeto, y conociendo el perfil del haz de excitación, es posible recuperar la forma del objeto de interés a partir la señal de fluorescencia colectada. El método de nSPIRO (nanoScale Precise Imaging by Rapid beam Oscillation) utiliza la oscilación rápida (en los milisegundos) de una haz de luz enfocado alrededor del objeto para obtener una respuesta oscilatoria cuya amplitud depende únicamente de la distancia a la superficie del objeto. En este trabajo mostramos simulaciones numéricas que permiten evaluar el alcance y las limitaciones del método, mostramos su implementación en un microscopio por absorción de dos fotones, y finalmente lo aplicamos al estudio de raíces de Arabidopsis Thaliana en condiciones fisiológicas.In this work, we present an alternative imaging method based on the orbital scanning of a laser excitation beam around the object of interest. This technology is capable of producing tridimensional images of fluorescent structures with nanometrical resolution in a few milliseconds. The method relies on the fact that when the excitation beam is near a fluorescent object, the emitted light from the object depends on the distance between its surface and the excitation beam. By modulating the distance between the beam and the object and taking into account the nonlinearity of the excitation intensity profile, it is possible to obtain an oscillating response whose amplitude depends only on the distance to the surface of the object. Given the fact that the excitation beam is always near the structure of interest, it is possible to measure moving specimens. Here, we present tridimensional reconstructions of Arabidopsis Thaliana roots which are ~ 50 μm in length and ~ 5 μm in diameter.Fil: Zaza, María Cecilia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Gabriel, Manuela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Estrada, Laura Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaAsociación Física Argentina2018-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/98848Zaza, María Cecilia; Gabriel, Manuela; Estrada, Laura Cecilia; Microscopía 3D por barrido orbital y modulación radial; Asociación Física Argentina; Anales de la Asociación Física Argentina; 29; 1; 4-2018; 12-191850-1168CONICET DigitalCONICETspainfo:eu-repo/semantics/altIdentifier/url/https://anales.fisica.org.ar/journal/index.php/analesafa/article/view/2153info:eu-repo/semantics/altIdentifier/doi/10.31527/analesafa.2018.29.1.12info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:53:28Zoai:ri.conicet.gov.ar:11336/98848instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:53:29.19CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Microscopía 3D por barrido orbital y modulación radial 3D microscopy by orbital radially modulated scan |
title |
Microscopía 3D por barrido orbital y modulación radial |
spellingShingle |
Microscopía 3D por barrido orbital y modulación radial Zaza, María Cecilia FLUORESCENCE MICROSCOPY SINGLE PARTICLE TRACKING |
title_short |
Microscopía 3D por barrido orbital y modulación radial |
title_full |
Microscopía 3D por barrido orbital y modulación radial |
title_fullStr |
Microscopía 3D por barrido orbital y modulación radial |
title_full_unstemmed |
Microscopía 3D por barrido orbital y modulación radial |
title_sort |
Microscopía 3D por barrido orbital y modulación radial |
dc.creator.none.fl_str_mv |
Zaza, María Cecilia Gabriel, Manuela Estrada, Laura Cecilia |
author |
Zaza, María Cecilia |
author_facet |
Zaza, María Cecilia Gabriel, Manuela Estrada, Laura Cecilia |
author_role |
author |
author2 |
Gabriel, Manuela Estrada, Laura Cecilia |
author2_role |
author author |
dc.subject.none.fl_str_mv |
FLUORESCENCE MICROSCOPY SINGLE PARTICLE TRACKING |
topic |
FLUORESCENCE MICROSCOPY SINGLE PARTICLE TRACKING |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.10 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
En este trabajo presentamos la implementación de un novedoso método de microscopía 3D basado en el barrido orbital de un haz de excitación alrededor de la estructura de interés. Esta tecnología es capaz de producir imágenes tridimensionales de estructuras en movimiento con resolución nanométrica y en pocas decenas de milisegundos. Dado que la intensidad de luz emitida por un objeto fluorescente depende fuertemente de la distancia entre el haz de excitación y la superficie del mismo, modulando la distancia haz-objeto, y conociendo el perfil del haz de excitación, es posible recuperar la forma del objeto de interés a partir la señal de fluorescencia colectada. El método de nSPIRO (nanoScale Precise Imaging by Rapid beam Oscillation) utiliza la oscilación rápida (en los milisegundos) de una haz de luz enfocado alrededor del objeto para obtener una respuesta oscilatoria cuya amplitud depende únicamente de la distancia a la superficie del objeto. En este trabajo mostramos simulaciones numéricas que permiten evaluar el alcance y las limitaciones del método, mostramos su implementación en un microscopio por absorción de dos fotones, y finalmente lo aplicamos al estudio de raíces de Arabidopsis Thaliana en condiciones fisiológicas. In this work, we present an alternative imaging method based on the orbital scanning of a laser excitation beam around the object of interest. This technology is capable of producing tridimensional images of fluorescent structures with nanometrical resolution in a few milliseconds. The method relies on the fact that when the excitation beam is near a fluorescent object, the emitted light from the object depends on the distance between its surface and the excitation beam. By modulating the distance between the beam and the object and taking into account the nonlinearity of the excitation intensity profile, it is possible to obtain an oscillating response whose amplitude depends only on the distance to the surface of the object. Given the fact that the excitation beam is always near the structure of interest, it is possible to measure moving specimens. Here, we present tridimensional reconstructions of Arabidopsis Thaliana roots which are ~ 50 μm in length and ~ 5 μm in diameter. Fil: Zaza, María Cecilia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Gabriel, Manuela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Estrada, Laura Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina |
description |
En este trabajo presentamos la implementación de un novedoso método de microscopía 3D basado en el barrido orbital de un haz de excitación alrededor de la estructura de interés. Esta tecnología es capaz de producir imágenes tridimensionales de estructuras en movimiento con resolución nanométrica y en pocas decenas de milisegundos. Dado que la intensidad de luz emitida por un objeto fluorescente depende fuertemente de la distancia entre el haz de excitación y la superficie del mismo, modulando la distancia haz-objeto, y conociendo el perfil del haz de excitación, es posible recuperar la forma del objeto de interés a partir la señal de fluorescencia colectada. El método de nSPIRO (nanoScale Precise Imaging by Rapid beam Oscillation) utiliza la oscilación rápida (en los milisegundos) de una haz de luz enfocado alrededor del objeto para obtener una respuesta oscilatoria cuya amplitud depende únicamente de la distancia a la superficie del objeto. En este trabajo mostramos simulaciones numéricas que permiten evaluar el alcance y las limitaciones del método, mostramos su implementación en un microscopio por absorción de dos fotones, y finalmente lo aplicamos al estudio de raíces de Arabidopsis Thaliana en condiciones fisiológicas. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/98848 Zaza, María Cecilia; Gabriel, Manuela; Estrada, Laura Cecilia; Microscopía 3D por barrido orbital y modulación radial; Asociación Física Argentina; Anales de la Asociación Física Argentina; 29; 1; 4-2018; 12-19 1850-1168 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/98848 |
identifier_str_mv |
Zaza, María Cecilia; Gabriel, Manuela; Estrada, Laura Cecilia; Microscopía 3D por barrido orbital y modulación radial; Asociación Física Argentina; Anales de la Asociación Física Argentina; 29; 1; 4-2018; 12-19 1850-1168 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://anales.fisica.org.ar/journal/index.php/analesafa/article/view/2153 info:eu-repo/semantics/altIdentifier/doi/10.31527/analesafa.2018.29.1.12 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Asociación Física Argentina |
publisher.none.fl_str_mv |
Asociación Física Argentina |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269228373114880 |
score |
13.13397 |