Morphological characterization of colorectal pits using autofluorescence microscopy images
- Autores
- Erbes, Luciana Ariadna; Zeitoune, Angel Alberto; Torres, Humberto Maximiliano; Casco, Victor Hugo; Adur, Javier Fernando
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Background: Colorectal cancer (CRC) is one of the most prevalent pathologies. Its prognosis is linked to the early detection and treatment. Currently diagnosis is performed by histological analysis from polyp biopsies, followed by morphological classification. Kudo?s pit pattern classification is frequently used for the differentiation of neoplastic colorectal lesions using hematoxylin-eosin (H&E) stained samples. Few articles have reported this classification with image software processing, using exogenous markers over the samples. The processing of autofluorescence images is an alternative that could allow the characterization of the pits from the crypts of Lieberkühn, bypassing staining techniques. Objective: Processing and analysis of widefield autofluorescence microscopy images obtained by fresh colon tissue samples from a murine model of CRC in order to quantify and characterize the pits morphology by measuring morphology parameters and shape descriptors. Methods: Two-dimensional (2D) segmentation, quantification and morphological characterization of pits by image processing applied using macro programming from FIJI. Results: Type I is the pit morphology prevailing between 53 and 81% in control group weeks. III-L and III-S types were detected in reduced percentages. Between the 33 and 56% of type I was stated as the prevailing morphology for the 4th, 8th and 20th weeks of treated groups, followed by III-L type. For the 16th week, the 39% of the pits was characterized as III-L type, followed by type I. Further, pattern types as IV, III-S and II were also found mainly in that order for almost all of the treated weeks. Conclusion: These preliminaries outcomes could be considered an advance in two-dimensional pit characterization as the whole image processing, comparing to the conventional procedure, takes a few seconds to quantify and characterize non-pathological colon pits as well as to estimate early pathological stages of CRC.
Fil: Erbes, Luciana Ariadna. Universidad Nacional de Entre Ríos. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática; Argentina
Fil: Zeitoune, Angel Alberto. Universidad Nacional de Entre Ríos. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática; Argentina
Fil: Torres, Humberto Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Casco, Victor Hugo. Universidad Nacional de Entre Ríos. Facultad de Ingeniería; Argentina
Fil: Adur, Javier Fernando. Universidad Nacional de Entre Ríos. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática; Argentina - Materia
-
colorectal
cancer
classification
pattern
autofluorescence
morphology - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/106790
Ver los metadatos del registro completo
id |
CONICETDig_379e5846d40d9fc277f8b911a22ad1f3 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/106790 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Morphological characterization of colorectal pits using autofluorescence microscopy imagesErbes, Luciana AriadnaZeitoune, Angel AlbertoTorres, Humberto MaximilianoCasco, Victor HugoAdur, Javier Fernandocolorectalcancerclassificationpatternautofluorescencemorphologyhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Background: Colorectal cancer (CRC) is one of the most prevalent pathologies. Its prognosis is linked to the early detection and treatment. Currently diagnosis is performed by histological analysis from polyp biopsies, followed by morphological classification. Kudo?s pit pattern classification is frequently used for the differentiation of neoplastic colorectal lesions using hematoxylin-eosin (H&E) stained samples. Few articles have reported this classification with image software processing, using exogenous markers over the samples. The processing of autofluorescence images is an alternative that could allow the characterization of the pits from the crypts of Lieberkühn, bypassing staining techniques. Objective: Processing and analysis of widefield autofluorescence microscopy images obtained by fresh colon tissue samples from a murine model of CRC in order to quantify and characterize the pits morphology by measuring morphology parameters and shape descriptors. Methods: Two-dimensional (2D) segmentation, quantification and morphological characterization of pits by image processing applied using macro programming from FIJI. Results: Type I is the pit morphology prevailing between 53 and 81% in control group weeks. III-L and III-S types were detected in reduced percentages. Between the 33 and 56% of type I was stated as the prevailing morphology for the 4th, 8th and 20th weeks of treated groups, followed by III-L type. For the 16th week, the 39% of the pits was characterized as III-L type, followed by type I. Further, pattern types as IV, III-S and II were also found mainly in that order for almost all of the treated weeks. Conclusion: These preliminaries outcomes could be considered an advance in two-dimensional pit characterization as the whole image processing, comparing to the conventional procedure, takes a few seconds to quantify and characterize non-pathological colon pits as well as to estimate early pathological stages of CRC.Fil: Erbes, Luciana Ariadna. Universidad Nacional de Entre Ríos. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática; ArgentinaFil: Zeitoune, Angel Alberto. Universidad Nacional de Entre Ríos. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática; ArgentinaFil: Torres, Humberto Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Casco, Victor Hugo. Universidad Nacional de Entre Ríos. Facultad de Ingeniería; ArgentinaFil: Adur, Javier Fernando. Universidad Nacional de Entre Ríos. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática; ArgentinaInstituto Brasileiro de Estudos e Pesquisas de Gastroenterologia e Outras Especialidades2019-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/106790Erbes, Luciana Ariadna; Zeitoune, Angel Alberto; Torres, Humberto Maximiliano; Casco, Victor Hugo; Adur, Javier Fernando; Morphological characterization of colorectal pits using autofluorescence microscopy images; Instituto Brasileiro de Estudos e Pesquisas de Gastroenterologia e Outras Especialidades; Arquivos de Gastroenterologia; 56; 2; 7-2019; 191-1960004-28031678-4219CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1590/s0004-2803.201900000-37info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:11:05Zoai:ri.conicet.gov.ar:11336/106790instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:11:05.803CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Morphological characterization of colorectal pits using autofluorescence microscopy images |
title |
Morphological characterization of colorectal pits using autofluorescence microscopy images |
spellingShingle |
Morphological characterization of colorectal pits using autofluorescence microscopy images Erbes, Luciana Ariadna colorectal cancer classification pattern autofluorescence morphology |
title_short |
Morphological characterization of colorectal pits using autofluorescence microscopy images |
title_full |
Morphological characterization of colorectal pits using autofluorescence microscopy images |
title_fullStr |
Morphological characterization of colorectal pits using autofluorescence microscopy images |
title_full_unstemmed |
Morphological characterization of colorectal pits using autofluorescence microscopy images |
title_sort |
Morphological characterization of colorectal pits using autofluorescence microscopy images |
dc.creator.none.fl_str_mv |
Erbes, Luciana Ariadna Zeitoune, Angel Alberto Torres, Humberto Maximiliano Casco, Victor Hugo Adur, Javier Fernando |
author |
Erbes, Luciana Ariadna |
author_facet |
Erbes, Luciana Ariadna Zeitoune, Angel Alberto Torres, Humberto Maximiliano Casco, Victor Hugo Adur, Javier Fernando |
author_role |
author |
author2 |
Zeitoune, Angel Alberto Torres, Humberto Maximiliano Casco, Victor Hugo Adur, Javier Fernando |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
colorectal cancer classification pattern autofluorescence morphology |
topic |
colorectal cancer classification pattern autofluorescence morphology |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Background: Colorectal cancer (CRC) is one of the most prevalent pathologies. Its prognosis is linked to the early detection and treatment. Currently diagnosis is performed by histological analysis from polyp biopsies, followed by morphological classification. Kudo?s pit pattern classification is frequently used for the differentiation of neoplastic colorectal lesions using hematoxylin-eosin (H&E) stained samples. Few articles have reported this classification with image software processing, using exogenous markers over the samples. The processing of autofluorescence images is an alternative that could allow the characterization of the pits from the crypts of Lieberkühn, bypassing staining techniques. Objective: Processing and analysis of widefield autofluorescence microscopy images obtained by fresh colon tissue samples from a murine model of CRC in order to quantify and characterize the pits morphology by measuring morphology parameters and shape descriptors. Methods: Two-dimensional (2D) segmentation, quantification and morphological characterization of pits by image processing applied using macro programming from FIJI. Results: Type I is the pit morphology prevailing between 53 and 81% in control group weeks. III-L and III-S types were detected in reduced percentages. Between the 33 and 56% of type I was stated as the prevailing morphology for the 4th, 8th and 20th weeks of treated groups, followed by III-L type. For the 16th week, the 39% of the pits was characterized as III-L type, followed by type I. Further, pattern types as IV, III-S and II were also found mainly in that order for almost all of the treated weeks. Conclusion: These preliminaries outcomes could be considered an advance in two-dimensional pit characterization as the whole image processing, comparing to the conventional procedure, takes a few seconds to quantify and characterize non-pathological colon pits as well as to estimate early pathological stages of CRC. Fil: Erbes, Luciana Ariadna. Universidad Nacional de Entre Ríos. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática; Argentina Fil: Zeitoune, Angel Alberto. Universidad Nacional de Entre Ríos. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática; Argentina Fil: Torres, Humberto Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Casco, Victor Hugo. Universidad Nacional de Entre Ríos. Facultad de Ingeniería; Argentina Fil: Adur, Javier Fernando. Universidad Nacional de Entre Ríos. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática; Argentina |
description |
Background: Colorectal cancer (CRC) is one of the most prevalent pathologies. Its prognosis is linked to the early detection and treatment. Currently diagnosis is performed by histological analysis from polyp biopsies, followed by morphological classification. Kudo?s pit pattern classification is frequently used for the differentiation of neoplastic colorectal lesions using hematoxylin-eosin (H&E) stained samples. Few articles have reported this classification with image software processing, using exogenous markers over the samples. The processing of autofluorescence images is an alternative that could allow the characterization of the pits from the crypts of Lieberkühn, bypassing staining techniques. Objective: Processing and analysis of widefield autofluorescence microscopy images obtained by fresh colon tissue samples from a murine model of CRC in order to quantify and characterize the pits morphology by measuring morphology parameters and shape descriptors. Methods: Two-dimensional (2D) segmentation, quantification and morphological characterization of pits by image processing applied using macro programming from FIJI. Results: Type I is the pit morphology prevailing between 53 and 81% in control group weeks. III-L and III-S types were detected in reduced percentages. Between the 33 and 56% of type I was stated as the prevailing morphology for the 4th, 8th and 20th weeks of treated groups, followed by III-L type. For the 16th week, the 39% of the pits was characterized as III-L type, followed by type I. Further, pattern types as IV, III-S and II were also found mainly in that order for almost all of the treated weeks. Conclusion: These preliminaries outcomes could be considered an advance in two-dimensional pit characterization as the whole image processing, comparing to the conventional procedure, takes a few seconds to quantify and characterize non-pathological colon pits as well as to estimate early pathological stages of CRC. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/106790 Erbes, Luciana Ariadna; Zeitoune, Angel Alberto; Torres, Humberto Maximiliano; Casco, Victor Hugo; Adur, Javier Fernando; Morphological characterization of colorectal pits using autofluorescence microscopy images; Instituto Brasileiro de Estudos e Pesquisas de Gastroenterologia e Outras Especialidades; Arquivos de Gastroenterologia; 56; 2; 7-2019; 191-196 0004-2803 1678-4219 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/106790 |
identifier_str_mv |
Erbes, Luciana Ariadna; Zeitoune, Angel Alberto; Torres, Humberto Maximiliano; Casco, Victor Hugo; Adur, Javier Fernando; Morphological characterization of colorectal pits using autofluorescence microscopy images; Instituto Brasileiro de Estudos e Pesquisas de Gastroenterologia e Outras Especialidades; Arquivos de Gastroenterologia; 56; 2; 7-2019; 191-196 0004-2803 1678-4219 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1590/s0004-2803.201900000-37 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Instituto Brasileiro de Estudos e Pesquisas de Gastroenterologia e Outras Especialidades |
publisher.none.fl_str_mv |
Instituto Brasileiro de Estudos e Pesquisas de Gastroenterologia e Outras Especialidades |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980564886355968 |
score |
12.993085 |