Towards a measure of harmonic complexity in western classical music

Autores
Buongiorno Nardelli, Marco; Culbreth, Garland; Fuentes, Miguel Angel
Año de publicación
2022
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We recently introduced the concept of dynamical score network to represent the harmonic progressions in any composition. Through a process of chord slicing, we obtain a representation of the score as a complex network, where every chord is a node and each progression (voice leading) links successive chords. In this paper, we use this representation to extract quantitative information about harmonic complexity from the analysis of the topology of these networks using state-of-the-art statistical mechanics techniques. Since complex networks support the communication of information by encoding the structure of allowed messages, we can quantify the information associated with locating specific addresses through the measure of the entropy of such network. In doing so, we then characterize properties of network topology, such as the degree distribution of a graph or the shortest paths between couples of nodes. Here, we report on two different evaluations of network entropy, diffusion entropy analysis (DEA) and the Kullback-Leibler divergence applied to the conditional degree matrix, and the measurements of complexity they provide, when applied to an extensive corpus of scores spanning 500 years of western classical music. Although the analysis is limited in scope, our results already provide quantitative evidence of an increase of such measures of harmonic complexity over the corpora we have analyzed.
Fil: Buongiorno Nardelli, Marco. University of North Texas; Estados Unidos
Fil: Culbreth, Garland. University of North Texas; Estados Unidos
Fil: Fuentes, Miguel Angel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Filosóficas. - Sociedad Argentina de Análisis Filosófico. Instituto de Investigaciones Filosóficas; Argentina
Materia
MUSIC ANALYSIS
MUSIC COMPLEXITY
MUSIC COMPOSITION
MUSIC EVOLUTION
MUSIC INFORMATION RETRIEVAL
MUSIC INNOVATION
MUSIC THEORY
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/202560

id CONICETDig_374626000eab012b1651ca9fc987192e
oai_identifier_str oai:ri.conicet.gov.ar:11336/202560
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Towards a measure of harmonic complexity in western classical musicBuongiorno Nardelli, MarcoCulbreth, GarlandFuentes, Miguel AngelMUSIC ANALYSISMUSIC COMPLEXITYMUSIC COMPOSITIONMUSIC EVOLUTIONMUSIC INFORMATION RETRIEVALMUSIC INNOVATIONMUSIC THEORYhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We recently introduced the concept of dynamical score network to represent the harmonic progressions in any composition. Through a process of chord slicing, we obtain a representation of the score as a complex network, where every chord is a node and each progression (voice leading) links successive chords. In this paper, we use this representation to extract quantitative information about harmonic complexity from the analysis of the topology of these networks using state-of-the-art statistical mechanics techniques. Since complex networks support the communication of information by encoding the structure of allowed messages, we can quantify the information associated with locating specific addresses through the measure of the entropy of such network. In doing so, we then characterize properties of network topology, such as the degree distribution of a graph or the shortest paths between couples of nodes. Here, we report on two different evaluations of network entropy, diffusion entropy analysis (DEA) and the Kullback-Leibler divergence applied to the conditional degree matrix, and the measurements of complexity they provide, when applied to an extensive corpus of scores spanning 500 years of western classical music. Although the analysis is limited in scope, our results already provide quantitative evidence of an increase of such measures of harmonic complexity over the corpora we have analyzed.Fil: Buongiorno Nardelli, Marco. University of North Texas; Estados UnidosFil: Culbreth, Garland. University of North Texas; Estados UnidosFil: Fuentes, Miguel Angel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Filosóficas. - Sociedad Argentina de Análisis Filosófico. Instituto de Investigaciones Filosóficas; ArgentinaWorld Scientific2022-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/202560Buongiorno Nardelli, Marco; Culbreth, Garland; Fuentes, Miguel Angel; Towards a measure of harmonic complexity in western classical music; World Scientific; Advances In Complex Systems; 25; 5-6; 6-2022; 1-110219-52591793-6802CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1142/S0219525922400082info:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/doi/10.1142/S0219525922400082info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T12:11:30Zoai:ri.conicet.gov.ar:11336/202560instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 12:11:31.27CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Towards a measure of harmonic complexity in western classical music
title Towards a measure of harmonic complexity in western classical music
spellingShingle Towards a measure of harmonic complexity in western classical music
Buongiorno Nardelli, Marco
MUSIC ANALYSIS
MUSIC COMPLEXITY
MUSIC COMPOSITION
MUSIC EVOLUTION
MUSIC INFORMATION RETRIEVAL
MUSIC INNOVATION
MUSIC THEORY
title_short Towards a measure of harmonic complexity in western classical music
title_full Towards a measure of harmonic complexity in western classical music
title_fullStr Towards a measure of harmonic complexity in western classical music
title_full_unstemmed Towards a measure of harmonic complexity in western classical music
title_sort Towards a measure of harmonic complexity in western classical music
dc.creator.none.fl_str_mv Buongiorno Nardelli, Marco
Culbreth, Garland
Fuentes, Miguel Angel
author Buongiorno Nardelli, Marco
author_facet Buongiorno Nardelli, Marco
Culbreth, Garland
Fuentes, Miguel Angel
author_role author
author2 Culbreth, Garland
Fuentes, Miguel Angel
author2_role author
author
dc.subject.none.fl_str_mv MUSIC ANALYSIS
MUSIC COMPLEXITY
MUSIC COMPOSITION
MUSIC EVOLUTION
MUSIC INFORMATION RETRIEVAL
MUSIC INNOVATION
MUSIC THEORY
topic MUSIC ANALYSIS
MUSIC COMPLEXITY
MUSIC COMPOSITION
MUSIC EVOLUTION
MUSIC INFORMATION RETRIEVAL
MUSIC INNOVATION
MUSIC THEORY
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We recently introduced the concept of dynamical score network to represent the harmonic progressions in any composition. Through a process of chord slicing, we obtain a representation of the score as a complex network, where every chord is a node and each progression (voice leading) links successive chords. In this paper, we use this representation to extract quantitative information about harmonic complexity from the analysis of the topology of these networks using state-of-the-art statistical mechanics techniques. Since complex networks support the communication of information by encoding the structure of allowed messages, we can quantify the information associated with locating specific addresses through the measure of the entropy of such network. In doing so, we then characterize properties of network topology, such as the degree distribution of a graph or the shortest paths between couples of nodes. Here, we report on two different evaluations of network entropy, diffusion entropy analysis (DEA) and the Kullback-Leibler divergence applied to the conditional degree matrix, and the measurements of complexity they provide, when applied to an extensive corpus of scores spanning 500 years of western classical music. Although the analysis is limited in scope, our results already provide quantitative evidence of an increase of such measures of harmonic complexity over the corpora we have analyzed.
Fil: Buongiorno Nardelli, Marco. University of North Texas; Estados Unidos
Fil: Culbreth, Garland. University of North Texas; Estados Unidos
Fil: Fuentes, Miguel Angel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Filosóficas. - Sociedad Argentina de Análisis Filosófico. Instituto de Investigaciones Filosóficas; Argentina
description We recently introduced the concept of dynamical score network to represent the harmonic progressions in any composition. Through a process of chord slicing, we obtain a representation of the score as a complex network, where every chord is a node and each progression (voice leading) links successive chords. In this paper, we use this representation to extract quantitative information about harmonic complexity from the analysis of the topology of these networks using state-of-the-art statistical mechanics techniques. Since complex networks support the communication of information by encoding the structure of allowed messages, we can quantify the information associated with locating specific addresses through the measure of the entropy of such network. In doing so, we then characterize properties of network topology, such as the degree distribution of a graph or the shortest paths between couples of nodes. Here, we report on two different evaluations of network entropy, diffusion entropy analysis (DEA) and the Kullback-Leibler divergence applied to the conditional degree matrix, and the measurements of complexity they provide, when applied to an extensive corpus of scores spanning 500 years of western classical music. Although the analysis is limited in scope, our results already provide quantitative evidence of an increase of such measures of harmonic complexity over the corpora we have analyzed.
publishDate 2022
dc.date.none.fl_str_mv 2022-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/202560
Buongiorno Nardelli, Marco; Culbreth, Garland; Fuentes, Miguel Angel; Towards a measure of harmonic complexity in western classical music; World Scientific; Advances In Complex Systems; 25; 5-6; 6-2022; 1-11
0219-5259
1793-6802
CONICET Digital
CONICET
url http://hdl.handle.net/11336/202560
identifier_str_mv Buongiorno Nardelli, Marco; Culbreth, Garland; Fuentes, Miguel Angel; Towards a measure of harmonic complexity in western classical music; World Scientific; Advances In Complex Systems; 25; 5-6; 6-2022; 1-11
0219-5259
1793-6802
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1142/S0219525922400082
info:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/doi/10.1142/S0219525922400082
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv World Scientific
publisher.none.fl_str_mv World Scientific
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846782507613159424
score 12.982451