Differences of ergodic averages for Cesaro bounded operators

Autores
Bernardis, Ana Lucia; Lorente, Malena; Martín Reyes, Francisco Javier; De La Torre, A.; Martinez, Maria Teresa
Año de publicación
2007
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We prove that the weighted differences of ergodic averages, induced by a Cesàro bounded, strongly continuous, one-parameter group of positive, invertible, linear operators on Lp, 1 < p < ∞, converge almost every where and in the Lp-norm. We obtain first the boundedness of the ergodic maximal operator and the convergence of the averages. © 2007. Published by Oxford University Press. All rights reserved.
Fil: Bernardis, Ana Lucia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Lorente, Malena. Universidad de Málaga; España
Fil: Martín Reyes, Francisco Javier. Universidad de Málaga; España
Fil: De La Torre, A.. Universidad de Málaga; España
Fil: Martinez, Maria Teresa. Universidad Autónoma de Madrid; España
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/84243

id CONICETDig_372063b81ec442a62696675854c55f56
oai_identifier_str oai:ri.conicet.gov.ar:11336/84243
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Differences of ergodic averages for Cesaro bounded operatorsBernardis, Ana LuciaLorente, MalenaMartín Reyes, Francisco JavierDe La Torre, A.Martinez, Maria Teresahttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We prove that the weighted differences of ergodic averages, induced by a Cesàro bounded, strongly continuous, one-parameter group of positive, invertible, linear operators on Lp, 1 < p < ∞, converge almost every where and in the Lp-norm. We obtain first the boundedness of the ergodic maximal operator and the convergence of the averages. © 2007. Published by Oxford University Press. All rights reserved.Fil: Bernardis, Ana Lucia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Lorente, Malena. Universidad de Málaga; EspañaFil: Martín Reyes, Francisco Javier. Universidad de Málaga; EspañaFil: De La Torre, A.. Universidad de Málaga; EspañaFil: Martinez, Maria Teresa. Universidad Autónoma de Madrid; EspañaOxford University Press2007-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/84243Bernardis, Ana Lucia; Lorente, Malena; Martín Reyes, Francisco Javier; De La Torre, A.; Martinez, Maria Teresa; Differences of ergodic averages for Cesaro bounded operators; Oxford University Press; Quarterly Journal Of Mathematics; 58; 2; 6-2007; 137-1500033-5606CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1093/qmath/hal023info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:40:52Zoai:ri.conicet.gov.ar:11336/84243instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:40:52.847CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Differences of ergodic averages for Cesaro bounded operators
title Differences of ergodic averages for Cesaro bounded operators
spellingShingle Differences of ergodic averages for Cesaro bounded operators
Bernardis, Ana Lucia
title_short Differences of ergodic averages for Cesaro bounded operators
title_full Differences of ergodic averages for Cesaro bounded operators
title_fullStr Differences of ergodic averages for Cesaro bounded operators
title_full_unstemmed Differences of ergodic averages for Cesaro bounded operators
title_sort Differences of ergodic averages for Cesaro bounded operators
dc.creator.none.fl_str_mv Bernardis, Ana Lucia
Lorente, Malena
Martín Reyes, Francisco Javier
De La Torre, A.
Martinez, Maria Teresa
author Bernardis, Ana Lucia
author_facet Bernardis, Ana Lucia
Lorente, Malena
Martín Reyes, Francisco Javier
De La Torre, A.
Martinez, Maria Teresa
author_role author
author2 Lorente, Malena
Martín Reyes, Francisco Javier
De La Torre, A.
Martinez, Maria Teresa
author2_role author
author
author
author
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We prove that the weighted differences of ergodic averages, induced by a Cesàro bounded, strongly continuous, one-parameter group of positive, invertible, linear operators on Lp, 1 < p < ∞, converge almost every where and in the Lp-norm. We obtain first the boundedness of the ergodic maximal operator and the convergence of the averages. © 2007. Published by Oxford University Press. All rights reserved.
Fil: Bernardis, Ana Lucia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Lorente, Malena. Universidad de Málaga; España
Fil: Martín Reyes, Francisco Javier. Universidad de Málaga; España
Fil: De La Torre, A.. Universidad de Málaga; España
Fil: Martinez, Maria Teresa. Universidad Autónoma de Madrid; España
description We prove that the weighted differences of ergodic averages, induced by a Cesàro bounded, strongly continuous, one-parameter group of positive, invertible, linear operators on Lp, 1 < p < ∞, converge almost every where and in the Lp-norm. We obtain first the boundedness of the ergodic maximal operator and the convergence of the averages. © 2007. Published by Oxford University Press. All rights reserved.
publishDate 2007
dc.date.none.fl_str_mv 2007-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/84243
Bernardis, Ana Lucia; Lorente, Malena; Martín Reyes, Francisco Javier; De La Torre, A.; Martinez, Maria Teresa; Differences of ergodic averages for Cesaro bounded operators; Oxford University Press; Quarterly Journal Of Mathematics; 58; 2; 6-2007; 137-150
0033-5606
CONICET Digital
CONICET
url http://hdl.handle.net/11336/84243
identifier_str_mv Bernardis, Ana Lucia; Lorente, Malena; Martín Reyes, Francisco Javier; De La Torre, A.; Martinez, Maria Teresa; Differences of ergodic averages for Cesaro bounded operators; Oxford University Press; Quarterly Journal Of Mathematics; 58; 2; 6-2007; 137-150
0033-5606
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1093/qmath/hal023
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Oxford University Press
publisher.none.fl_str_mv Oxford University Press
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613293227900928
score 13.070432