High finite-sample efficiency and robustness based on distance-constrained maximum likelihood
- Autores
- Maronna, Ricardo Antonio; Yohai, Victor Jaime
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Good robust estimators can be tuned to combine a high breakdown point and a specified asymptotic efficiency at a central model. This happens in regression with MM- and -estimators among others. However, the finite-sample efficiency of these estimators can be much lower than the asymptotic one. To overcome this drawback, an approach is proposed for parametric models, which is based on a distance between parameters. Given a robust estimator, the proposed one is obtained by maximizing the likelihood under the constraint that the distance is less than a given threshold. For the linear model with normal errors, simulations show that the proposed estimator attains a finite-sample efficiency close to one while improving the robustness of the initial estimator. The same approach also shows good results in the estimation of multivariate location and scatter.
Fil: Maronna, Ricardo Antonio. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Yohai, Victor Jaime. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Linear Model
Robust Estimator
High Efficiency - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/42723
Ver los metadatos del registro completo
| id |
CONICETDig_367611ce53149d32001b03f3288d13b4 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/42723 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
High finite-sample efficiency and robustness based on distance-constrained maximum likelihoodMaronna, Ricardo AntonioYohai, Victor JaimeLinear ModelRobust EstimatorHigh Efficiencyhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Good robust estimators can be tuned to combine a high breakdown point and a specified asymptotic efficiency at a central model. This happens in regression with MM- and -estimators among others. However, the finite-sample efficiency of these estimators can be much lower than the asymptotic one. To overcome this drawback, an approach is proposed for parametric models, which is based on a distance between parameters. Given a robust estimator, the proposed one is obtained by maximizing the likelihood under the constraint that the distance is less than a given threshold. For the linear model with normal errors, simulations show that the proposed estimator attains a finite-sample efficiency close to one while improving the robustness of the initial estimator. The same approach also shows good results in the estimation of multivariate location and scatter.Fil: Maronna, Ricardo Antonio. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Yohai, Victor Jaime. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier Science2015-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/42723Maronna, Ricardo Antonio; Yohai, Victor Jaime; High finite-sample efficiency and robustness based on distance-constrained maximum likelihood; Elsevier Science; Computational Statistics and Data Analysis; 83; 3-2015; 262-2740167-9473CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.csda.2014.10.015info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0167947314003077info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-12-23T13:35:45Zoai:ri.conicet.gov.ar:11336/42723instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-12-23 13:35:45.57CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
High finite-sample efficiency and robustness based on distance-constrained maximum likelihood |
| title |
High finite-sample efficiency and robustness based on distance-constrained maximum likelihood |
| spellingShingle |
High finite-sample efficiency and robustness based on distance-constrained maximum likelihood Maronna, Ricardo Antonio Linear Model Robust Estimator High Efficiency |
| title_short |
High finite-sample efficiency and robustness based on distance-constrained maximum likelihood |
| title_full |
High finite-sample efficiency and robustness based on distance-constrained maximum likelihood |
| title_fullStr |
High finite-sample efficiency and robustness based on distance-constrained maximum likelihood |
| title_full_unstemmed |
High finite-sample efficiency and robustness based on distance-constrained maximum likelihood |
| title_sort |
High finite-sample efficiency and robustness based on distance-constrained maximum likelihood |
| dc.creator.none.fl_str_mv |
Maronna, Ricardo Antonio Yohai, Victor Jaime |
| author |
Maronna, Ricardo Antonio |
| author_facet |
Maronna, Ricardo Antonio Yohai, Victor Jaime |
| author_role |
author |
| author2 |
Yohai, Victor Jaime |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
Linear Model Robust Estimator High Efficiency |
| topic |
Linear Model Robust Estimator High Efficiency |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Good robust estimators can be tuned to combine a high breakdown point and a specified asymptotic efficiency at a central model. This happens in regression with MM- and -estimators among others. However, the finite-sample efficiency of these estimators can be much lower than the asymptotic one. To overcome this drawback, an approach is proposed for parametric models, which is based on a distance between parameters. Given a robust estimator, the proposed one is obtained by maximizing the likelihood under the constraint that the distance is less than a given threshold. For the linear model with normal errors, simulations show that the proposed estimator attains a finite-sample efficiency close to one while improving the robustness of the initial estimator. The same approach also shows good results in the estimation of multivariate location and scatter. Fil: Maronna, Ricardo Antonio. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Yohai, Victor Jaime. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
| description |
Good robust estimators can be tuned to combine a high breakdown point and a specified asymptotic efficiency at a central model. This happens in regression with MM- and -estimators among others. However, the finite-sample efficiency of these estimators can be much lower than the asymptotic one. To overcome this drawback, an approach is proposed for parametric models, which is based on a distance between parameters. Given a robust estimator, the proposed one is obtained by maximizing the likelihood under the constraint that the distance is less than a given threshold. For the linear model with normal errors, simulations show that the proposed estimator attains a finite-sample efficiency close to one while improving the robustness of the initial estimator. The same approach also shows good results in the estimation of multivariate location and scatter. |
| publishDate |
2015 |
| dc.date.none.fl_str_mv |
2015-03 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/42723 Maronna, Ricardo Antonio; Yohai, Victor Jaime; High finite-sample efficiency and robustness based on distance-constrained maximum likelihood; Elsevier Science; Computational Statistics and Data Analysis; 83; 3-2015; 262-274 0167-9473 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/42723 |
| identifier_str_mv |
Maronna, Ricardo Antonio; Yohai, Victor Jaime; High finite-sample efficiency and robustness based on distance-constrained maximum likelihood; Elsevier Science; Computational Statistics and Data Analysis; 83; 3-2015; 262-274 0167-9473 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.csda.2014.10.015 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0167947314003077 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Elsevier Science |
| publisher.none.fl_str_mv |
Elsevier Science |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1852335241662824448 |
| score |
12.952241 |