High finite-sample efficiency and robustness based on distance-constrained maximum likelihood

Autores
Maronna, Ricardo Antonio; Yohai, Victor Jaime
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Good robust estimators can be tuned to combine a high breakdown point and a specified asymptotic efficiency at a central model. This happens in regression with MM- and -estimators among others. However, the finite-sample efficiency of these estimators can be much lower than the asymptotic one. To overcome this drawback, an approach is proposed for parametric models, which is based on a distance between parameters. Given a robust estimator, the proposed one is obtained by maximizing the likelihood under the constraint that the distance is less than a given threshold. For the linear model with normal errors, simulations show that the proposed estimator attains a finite-sample efficiency close to one while improving the robustness of the initial estimator. The same approach also shows good results in the estimation of multivariate location and scatter.
Fil: Maronna, Ricardo Antonio. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Yohai, Victor Jaime. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Linear Model
Robust Estimator
High Efficiency
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/42723

id CONICETDig_367611ce53149d32001b03f3288d13b4
oai_identifier_str oai:ri.conicet.gov.ar:11336/42723
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling High finite-sample efficiency and robustness based on distance-constrained maximum likelihoodMaronna, Ricardo AntonioYohai, Victor JaimeLinear ModelRobust EstimatorHigh Efficiencyhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Good robust estimators can be tuned to combine a high breakdown point and a specified asymptotic efficiency at a central model. This happens in regression with MM- and -estimators among others. However, the finite-sample efficiency of these estimators can be much lower than the asymptotic one. To overcome this drawback, an approach is proposed for parametric models, which is based on a distance between parameters. Given a robust estimator, the proposed one is obtained by maximizing the likelihood under the constraint that the distance is less than a given threshold. For the linear model with normal errors, simulations show that the proposed estimator attains a finite-sample efficiency close to one while improving the robustness of the initial estimator. The same approach also shows good results in the estimation of multivariate location and scatter.Fil: Maronna, Ricardo Antonio. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Yohai, Victor Jaime. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier Science2015-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/42723Maronna, Ricardo Antonio; Yohai, Victor Jaime; High finite-sample efficiency and robustness based on distance-constrained maximum likelihood; Elsevier Science; Computational Statistics and Data Analysis; 83; 3-2015; 262-2740167-9473CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.csda.2014.10.015info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0167947314003077info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-12-23T13:35:45Zoai:ri.conicet.gov.ar:11336/42723instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-12-23 13:35:45.57CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv High finite-sample efficiency and robustness based on distance-constrained maximum likelihood
title High finite-sample efficiency and robustness based on distance-constrained maximum likelihood
spellingShingle High finite-sample efficiency and robustness based on distance-constrained maximum likelihood
Maronna, Ricardo Antonio
Linear Model
Robust Estimator
High Efficiency
title_short High finite-sample efficiency and robustness based on distance-constrained maximum likelihood
title_full High finite-sample efficiency and robustness based on distance-constrained maximum likelihood
title_fullStr High finite-sample efficiency and robustness based on distance-constrained maximum likelihood
title_full_unstemmed High finite-sample efficiency and robustness based on distance-constrained maximum likelihood
title_sort High finite-sample efficiency and robustness based on distance-constrained maximum likelihood
dc.creator.none.fl_str_mv Maronna, Ricardo Antonio
Yohai, Victor Jaime
author Maronna, Ricardo Antonio
author_facet Maronna, Ricardo Antonio
Yohai, Victor Jaime
author_role author
author2 Yohai, Victor Jaime
author2_role author
dc.subject.none.fl_str_mv Linear Model
Robust Estimator
High Efficiency
topic Linear Model
Robust Estimator
High Efficiency
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Good robust estimators can be tuned to combine a high breakdown point and a specified asymptotic efficiency at a central model. This happens in regression with MM- and -estimators among others. However, the finite-sample efficiency of these estimators can be much lower than the asymptotic one. To overcome this drawback, an approach is proposed for parametric models, which is based on a distance between parameters. Given a robust estimator, the proposed one is obtained by maximizing the likelihood under the constraint that the distance is less than a given threshold. For the linear model with normal errors, simulations show that the proposed estimator attains a finite-sample efficiency close to one while improving the robustness of the initial estimator. The same approach also shows good results in the estimation of multivariate location and scatter.
Fil: Maronna, Ricardo Antonio. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Yohai, Victor Jaime. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description Good robust estimators can be tuned to combine a high breakdown point and a specified asymptotic efficiency at a central model. This happens in regression with MM- and -estimators among others. However, the finite-sample efficiency of these estimators can be much lower than the asymptotic one. To overcome this drawback, an approach is proposed for parametric models, which is based on a distance between parameters. Given a robust estimator, the proposed one is obtained by maximizing the likelihood under the constraint that the distance is less than a given threshold. For the linear model with normal errors, simulations show that the proposed estimator attains a finite-sample efficiency close to one while improving the robustness of the initial estimator. The same approach also shows good results in the estimation of multivariate location and scatter.
publishDate 2015
dc.date.none.fl_str_mv 2015-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/42723
Maronna, Ricardo Antonio; Yohai, Victor Jaime; High finite-sample efficiency and robustness based on distance-constrained maximum likelihood; Elsevier Science; Computational Statistics and Data Analysis; 83; 3-2015; 262-274
0167-9473
CONICET Digital
CONICET
url http://hdl.handle.net/11336/42723
identifier_str_mv Maronna, Ricardo Antonio; Yohai, Victor Jaime; High finite-sample efficiency and robustness based on distance-constrained maximum likelihood; Elsevier Science; Computational Statistics and Data Analysis; 83; 3-2015; 262-274
0167-9473
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.csda.2014.10.015
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0167947314003077
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1852335241662824448
score 12.952241