Shaping the Immune Landscape in Cancer by Galectin-Driven Regulatory Pathways

Autores
Rabinovich, Gabriel Adrián; Conejo García, José R.
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Along with the discovery of tumor-driven inflammatory pathways, there has been a considerable progress over the past 10 years in understanding the mechanisms leading to cancer immunosurveillance and immunoediting. Several regulatory pathways, typically involved in immune cell homeostasis, are co-opted by cancer cells to thwart the development of effective antitumor responses. These regulatory circuits include the engagement of inhibitory checkpoint pathways (CTLA-4, PD-1/PD-L1, LAG-3 and TIM-3), secretion of immunosuppressive cytokines (TGF-β, IL-10), and expansion and/or recruitment of myeloid or lymphoid regulatory cell populations. Elucidation of these pathways has inspired the design and implementation of novel immunotherapeutic modalities, which have already generated clinical benefits in an important number of cancer patients. Galectins, a family of glycan-binding proteins widely expressed in the tumor microenvironment (TME), have emerged as key players in immune evasion programs that differentially control the fate of effector and regulatory lymphoid and myeloid cell populations. How do galectins translate glycan-containing information into cellular programs that control immune regulatory cancer networks? Here, we uncover the selective roles of individual members of the galectin family in cancer-promoting inflammation, immunosuppression, and angiogenesis. Moreover, we highlight the relevance of corresponding glycosylated ligands and counter-receptors and the emerging function of these lectins as biological liaisons connecting commensal microbiota, systemic inflammation, and distal tumor growth. Understanding the molecular and cellular components of galectin-driven regulatory circuits, the implications of different glycosylation pathways in their functions and their clinical relevance in human cancer might lead to the development of new therapeutic approaches in a broad range of tumor types.
Fil: Rabinovich, Gabriel Adrián. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina. Universidad de Buenos Aires; Argentina
Fil: Conejo García, José R.. The Wistar Institute; Estados Unidos
Materia
CANCER
GALECTINS
GLYCANS
IMMUNOTHERAPY
TUMOR IMMUNITY
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/23844

id CONICETDig_329ecb6208df77efd663e2f4dce10cbc
oai_identifier_str oai:ri.conicet.gov.ar:11336/23844
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Shaping the Immune Landscape in Cancer by Galectin-Driven Regulatory PathwaysRabinovich, Gabriel AdriánConejo García, José R.CANCERGALECTINSGLYCANSIMMUNOTHERAPYTUMOR IMMUNITYhttps://purl.org/becyt/ford/3.1https://purl.org/becyt/ford/3https://purl.org/becyt/ford/3.1https://purl.org/becyt/ford/3https://purl.org/becyt/ford/3.1https://purl.org/becyt/ford/3Along with the discovery of tumor-driven inflammatory pathways, there has been a considerable progress over the past 10 years in understanding the mechanisms leading to cancer immunosurveillance and immunoediting. Several regulatory pathways, typically involved in immune cell homeostasis, are co-opted by cancer cells to thwart the development of effective antitumor responses. These regulatory circuits include the engagement of inhibitory checkpoint pathways (CTLA-4, PD-1/PD-L1, LAG-3 and TIM-3), secretion of immunosuppressive cytokines (TGF-β, IL-10), and expansion and/or recruitment of myeloid or lymphoid regulatory cell populations. Elucidation of these pathways has inspired the design and implementation of novel immunotherapeutic modalities, which have already generated clinical benefits in an important number of cancer patients. Galectins, a family of glycan-binding proteins widely expressed in the tumor microenvironment (TME), have emerged as key players in immune evasion programs that differentially control the fate of effector and regulatory lymphoid and myeloid cell populations. How do galectins translate glycan-containing information into cellular programs that control immune regulatory cancer networks? Here, we uncover the selective roles of individual members of the galectin family in cancer-promoting inflammation, immunosuppression, and angiogenesis. Moreover, we highlight the relevance of corresponding glycosylated ligands and counter-receptors and the emerging function of these lectins as biological liaisons connecting commensal microbiota, systemic inflammation, and distal tumor growth. Understanding the molecular and cellular components of galectin-driven regulatory circuits, the implications of different glycosylation pathways in their functions and their clinical relevance in human cancer might lead to the development of new therapeutic approaches in a broad range of tumor types.Fil: Rabinovich, Gabriel Adrián. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina. Universidad de Buenos Aires; ArgentinaFil: Conejo García, José R.. The Wistar Institute; Estados UnidosElsevier2016-03-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/23844Rabinovich, Gabriel Adrián; Conejo García, José R.; Shaping the Immune Landscape in Cancer by Galectin-Driven Regulatory Pathways; Elsevier; Journal Of Molecular Biology; 428; 16; 30-3-2016; 3266-32810022-28361089-8638CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmb.2016.03.021info:eu-repo/semantics/altIdentifier/pmid/27038510info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:00:35Zoai:ri.conicet.gov.ar:11336/23844instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:00:35.787CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Shaping the Immune Landscape in Cancer by Galectin-Driven Regulatory Pathways
title Shaping the Immune Landscape in Cancer by Galectin-Driven Regulatory Pathways
spellingShingle Shaping the Immune Landscape in Cancer by Galectin-Driven Regulatory Pathways
Rabinovich, Gabriel Adrián
CANCER
GALECTINS
GLYCANS
IMMUNOTHERAPY
TUMOR IMMUNITY
title_short Shaping the Immune Landscape in Cancer by Galectin-Driven Regulatory Pathways
title_full Shaping the Immune Landscape in Cancer by Galectin-Driven Regulatory Pathways
title_fullStr Shaping the Immune Landscape in Cancer by Galectin-Driven Regulatory Pathways
title_full_unstemmed Shaping the Immune Landscape in Cancer by Galectin-Driven Regulatory Pathways
title_sort Shaping the Immune Landscape in Cancer by Galectin-Driven Regulatory Pathways
dc.creator.none.fl_str_mv Rabinovich, Gabriel Adrián
Conejo García, José R.
author Rabinovich, Gabriel Adrián
author_facet Rabinovich, Gabriel Adrián
Conejo García, José R.
author_role author
author2 Conejo García, José R.
author2_role author
dc.subject.none.fl_str_mv CANCER
GALECTINS
GLYCANS
IMMUNOTHERAPY
TUMOR IMMUNITY
topic CANCER
GALECTINS
GLYCANS
IMMUNOTHERAPY
TUMOR IMMUNITY
purl_subject.fl_str_mv https://purl.org/becyt/ford/3.1
https://purl.org/becyt/ford/3
https://purl.org/becyt/ford/3.1
https://purl.org/becyt/ford/3
https://purl.org/becyt/ford/3.1
https://purl.org/becyt/ford/3
dc.description.none.fl_txt_mv Along with the discovery of tumor-driven inflammatory pathways, there has been a considerable progress over the past 10 years in understanding the mechanisms leading to cancer immunosurveillance and immunoediting. Several regulatory pathways, typically involved in immune cell homeostasis, are co-opted by cancer cells to thwart the development of effective antitumor responses. These regulatory circuits include the engagement of inhibitory checkpoint pathways (CTLA-4, PD-1/PD-L1, LAG-3 and TIM-3), secretion of immunosuppressive cytokines (TGF-β, IL-10), and expansion and/or recruitment of myeloid or lymphoid regulatory cell populations. Elucidation of these pathways has inspired the design and implementation of novel immunotherapeutic modalities, which have already generated clinical benefits in an important number of cancer patients. Galectins, a family of glycan-binding proteins widely expressed in the tumor microenvironment (TME), have emerged as key players in immune evasion programs that differentially control the fate of effector and regulatory lymphoid and myeloid cell populations. How do galectins translate glycan-containing information into cellular programs that control immune regulatory cancer networks? Here, we uncover the selective roles of individual members of the galectin family in cancer-promoting inflammation, immunosuppression, and angiogenesis. Moreover, we highlight the relevance of corresponding glycosylated ligands and counter-receptors and the emerging function of these lectins as biological liaisons connecting commensal microbiota, systemic inflammation, and distal tumor growth. Understanding the molecular and cellular components of galectin-driven regulatory circuits, the implications of different glycosylation pathways in their functions and their clinical relevance in human cancer might lead to the development of new therapeutic approaches in a broad range of tumor types.
Fil: Rabinovich, Gabriel Adrián. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina. Universidad de Buenos Aires; Argentina
Fil: Conejo García, José R.. The Wistar Institute; Estados Unidos
description Along with the discovery of tumor-driven inflammatory pathways, there has been a considerable progress over the past 10 years in understanding the mechanisms leading to cancer immunosurveillance and immunoediting. Several regulatory pathways, typically involved in immune cell homeostasis, are co-opted by cancer cells to thwart the development of effective antitumor responses. These regulatory circuits include the engagement of inhibitory checkpoint pathways (CTLA-4, PD-1/PD-L1, LAG-3 and TIM-3), secretion of immunosuppressive cytokines (TGF-β, IL-10), and expansion and/or recruitment of myeloid or lymphoid regulatory cell populations. Elucidation of these pathways has inspired the design and implementation of novel immunotherapeutic modalities, which have already generated clinical benefits in an important number of cancer patients. Galectins, a family of glycan-binding proteins widely expressed in the tumor microenvironment (TME), have emerged as key players in immune evasion programs that differentially control the fate of effector and regulatory lymphoid and myeloid cell populations. How do galectins translate glycan-containing information into cellular programs that control immune regulatory cancer networks? Here, we uncover the selective roles of individual members of the galectin family in cancer-promoting inflammation, immunosuppression, and angiogenesis. Moreover, we highlight the relevance of corresponding glycosylated ligands and counter-receptors and the emerging function of these lectins as biological liaisons connecting commensal microbiota, systemic inflammation, and distal tumor growth. Understanding the molecular and cellular components of galectin-driven regulatory circuits, the implications of different glycosylation pathways in their functions and their clinical relevance in human cancer might lead to the development of new therapeutic approaches in a broad range of tumor types.
publishDate 2016
dc.date.none.fl_str_mv 2016-03-30
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/23844
Rabinovich, Gabriel Adrián; Conejo García, José R.; Shaping the Immune Landscape in Cancer by Galectin-Driven Regulatory Pathways; Elsevier; Journal Of Molecular Biology; 428; 16; 30-3-2016; 3266-3281
0022-2836
1089-8638
CONICET Digital
CONICET
url http://hdl.handle.net/11336/23844
identifier_str_mv Rabinovich, Gabriel Adrián; Conejo García, José R.; Shaping the Immune Landscape in Cancer by Galectin-Driven Regulatory Pathways; Elsevier; Journal Of Molecular Biology; 428; 16; 30-3-2016; 3266-3281
0022-2836
1089-8638
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmb.2016.03.021
info:eu-repo/semantics/altIdentifier/pmid/27038510
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269647733260288
score 13.13397