Linear Regression QSAR Models for Polo-Like Kinase-1 Inhibitors
- Autores
- Duchowicz, Pablo Román
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A structurally diverse dataset of 530 polo-like kinase-1 (PLK1) inhibitors is compiledfrom the ChEMBL database and studied by means of a conformation-independent quantitativestructure-activity relationship (QSAR) approach. A large number (26,761) of molecular descriptorsare explored with the main intention of capturing the most relevant structural characteristics affectingthe bioactivity. The structural descriptors are derived with different freeware, such as PaDEL,Mold2, and QuBiLs-MAS; such descriptor software complements each other and improves the QSARresults. The best multivariable linear regression models are found with the replacement methodvariable subset selection technique. The balanced subsets method partitions the dataset into training,validation, and test sets. It is found that the proposed linear QSAR model improves previouslyreported models by leading to a simpler alternative structure-activity relationship.
Fil: Duchowicz, Pablo Román. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina - Materia
-
polo-like kinase-1 inhibitors
QSAR
half-maximal inhibitory concentration
replacement method
molecular descriptors - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/102533
Ver los metadatos del registro completo
id |
CONICETDig_329516e5c87e1f68dad486556e927e3d |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/102533 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Linear Regression QSAR Models for Polo-Like Kinase-1 InhibitorsDuchowicz, Pablo Románpolo-like kinase-1 inhibitorsQSARhalf-maximal inhibitory concentrationreplacement methodmolecular descriptorshttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1A structurally diverse dataset of 530 polo-like kinase-1 (PLK1) inhibitors is compiledfrom the ChEMBL database and studied by means of a conformation-independent quantitativestructure-activity relationship (QSAR) approach. A large number (26,761) of molecular descriptorsare explored with the main intention of capturing the most relevant structural characteristics affectingthe bioactivity. The structural descriptors are derived with different freeware, such as PaDEL,Mold2, and QuBiLs-MAS; such descriptor software complements each other and improves the QSARresults. The best multivariable linear regression models are found with the replacement methodvariable subset selection technique. The balanced subsets method partitions the dataset into training,validation, and test sets. It is found that the proposed linear QSAR model improves previouslyreported models by leading to a simpler alternative structure-activity relationship.Fil: Duchowicz, Pablo Román. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaMDPI2018-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/102533Duchowicz, Pablo Román; Linear Regression QSAR Models for Polo-Like Kinase-1 Inhibitors; MDPI; Cells; 7; 2; 2-2018; 1-112073-4409CONICET DigitalCONICETengVer también http://hdl.handle.net/11336/5267info:eu-repo/semantics/altIdentifier/url/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5850101/info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2073-4409/7/2/13info:eu-repo/semantics/altIdentifier/doi/10.3390/cells7020013info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:43:33Zoai:ri.conicet.gov.ar:11336/102533instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:43:33.544CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Linear Regression QSAR Models for Polo-Like Kinase-1 Inhibitors |
title |
Linear Regression QSAR Models for Polo-Like Kinase-1 Inhibitors |
spellingShingle |
Linear Regression QSAR Models for Polo-Like Kinase-1 Inhibitors Duchowicz, Pablo Román polo-like kinase-1 inhibitors QSAR half-maximal inhibitory concentration replacement method molecular descriptors |
title_short |
Linear Regression QSAR Models for Polo-Like Kinase-1 Inhibitors |
title_full |
Linear Regression QSAR Models for Polo-Like Kinase-1 Inhibitors |
title_fullStr |
Linear Regression QSAR Models for Polo-Like Kinase-1 Inhibitors |
title_full_unstemmed |
Linear Regression QSAR Models for Polo-Like Kinase-1 Inhibitors |
title_sort |
Linear Regression QSAR Models for Polo-Like Kinase-1 Inhibitors |
dc.creator.none.fl_str_mv |
Duchowicz, Pablo Román |
author |
Duchowicz, Pablo Román |
author_facet |
Duchowicz, Pablo Román |
author_role |
author |
dc.subject.none.fl_str_mv |
polo-like kinase-1 inhibitors QSAR half-maximal inhibitory concentration replacement method molecular descriptors |
topic |
polo-like kinase-1 inhibitors QSAR half-maximal inhibitory concentration replacement method molecular descriptors |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
A structurally diverse dataset of 530 polo-like kinase-1 (PLK1) inhibitors is compiledfrom the ChEMBL database and studied by means of a conformation-independent quantitativestructure-activity relationship (QSAR) approach. A large number (26,761) of molecular descriptorsare explored with the main intention of capturing the most relevant structural characteristics affectingthe bioactivity. The structural descriptors are derived with different freeware, such as PaDEL,Mold2, and QuBiLs-MAS; such descriptor software complements each other and improves the QSARresults. The best multivariable linear regression models are found with the replacement methodvariable subset selection technique. The balanced subsets method partitions the dataset into training,validation, and test sets. It is found that the proposed linear QSAR model improves previouslyreported models by leading to a simpler alternative structure-activity relationship. Fil: Duchowicz, Pablo Román. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina |
description |
A structurally diverse dataset of 530 polo-like kinase-1 (PLK1) inhibitors is compiledfrom the ChEMBL database and studied by means of a conformation-independent quantitativestructure-activity relationship (QSAR) approach. A large number (26,761) of molecular descriptorsare explored with the main intention of capturing the most relevant structural characteristics affectingthe bioactivity. The structural descriptors are derived with different freeware, such as PaDEL,Mold2, and QuBiLs-MAS; such descriptor software complements each other and improves the QSARresults. The best multivariable linear regression models are found with the replacement methodvariable subset selection technique. The balanced subsets method partitions the dataset into training,validation, and test sets. It is found that the proposed linear QSAR model improves previouslyreported models by leading to a simpler alternative structure-activity relationship. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/102533 Duchowicz, Pablo Román; Linear Regression QSAR Models for Polo-Like Kinase-1 Inhibitors; MDPI; Cells; 7; 2; 2-2018; 1-11 2073-4409 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/102533 |
identifier_str_mv |
Duchowicz, Pablo Román; Linear Regression QSAR Models for Polo-Like Kinase-1 Inhibitors; MDPI; Cells; 7; 2; 2-2018; 1-11 2073-4409 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Ver también http://hdl.handle.net/11336/5267 info:eu-repo/semantics/altIdentifier/url/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5850101/ info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2073-4409/7/2/13 info:eu-repo/semantics/altIdentifier/doi/10.3390/cells7020013 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268609354661888 |
score |
13.13397 |