Linear Regression QSAR Models for Polo-Like Kinase-1 Inhibitors

Autores
Duchowicz, Pablo Román
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A structurally diverse dataset of 530 polo-like kinase-1 (PLK1) inhibitors is compiled from the ChEMBL database and studied by means of a conformation-independent quantitative structure-activity relationship (QSAR) approach. A large number (26,761) of molecular descriptors are explored with the main intention of capturing the most relevant structural characteristics affecting the bioactivity. The structural descriptors are derived with different freeware, such as PaDEL, Mold2, and QuBiLs-MAS; such descriptor software complements each other and improves the QSAR results. The best multivariable linear regression models are found with the replacement method variable subset selection technique. The balanced subsets method partitions the dataset into training, validation, and test sets. It is found that the proposed linear QSAR model improves previously reported models by leading to a simpler alternative structure-activity relationship.
Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas
Materia
Biología
Polo-like kinase-1 inhibitors
Quantitative structure-activity relationships
Half-maximal inhibitory concentration
Replacement method
Molecular descriptors
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/125375

id SEDICI_ffc8b858073f6757f3724a16418f4b65
oai_identifier_str oai:sedici.unlp.edu.ar:10915/125375
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Linear Regression QSAR Models for Polo-Like Kinase-1 InhibitorsDuchowicz, Pablo RománBiologíaPolo-like kinase-1 inhibitorsQuantitative structure-activity relationshipsHalf-maximal inhibitory concentrationReplacement methodMolecular descriptorsA structurally diverse dataset of 530 polo-like kinase-1 (PLK1) inhibitors is compiled from the ChEMBL database and studied by means of a conformation-independent quantitative structure-activity relationship (QSAR) approach. A large number (26,761) of molecular descriptors are explored with the main intention of capturing the most relevant structural characteristics affecting the bioactivity. The structural descriptors are derived with different freeware, such as PaDEL, Mold2, and QuBiLs-MAS; such descriptor software complements each other and improves the QSAR results. The best multivariable linear regression models are found with the replacement method variable subset selection technique. The balanced subsets method partitions the dataset into training, validation, and test sets. It is found that the proposed linear QSAR model improves previously reported models by leading to a simpler alternative structure-activity relationship.Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas2018info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/125375enginfo:eu-repo/semantics/altIdentifier/issn/2073-4409info:eu-repo/semantics/altIdentifier/doi/10.3390/cells7020013info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T11:02:08Zoai:sedici.unlp.edu.ar:10915/125375Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 11:02:08.972SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Linear Regression QSAR Models for Polo-Like Kinase-1 Inhibitors
title Linear Regression QSAR Models for Polo-Like Kinase-1 Inhibitors
spellingShingle Linear Regression QSAR Models for Polo-Like Kinase-1 Inhibitors
Duchowicz, Pablo Román
Biología
Polo-like kinase-1 inhibitors
Quantitative structure-activity relationships
Half-maximal inhibitory concentration
Replacement method
Molecular descriptors
title_short Linear Regression QSAR Models for Polo-Like Kinase-1 Inhibitors
title_full Linear Regression QSAR Models for Polo-Like Kinase-1 Inhibitors
title_fullStr Linear Regression QSAR Models for Polo-Like Kinase-1 Inhibitors
title_full_unstemmed Linear Regression QSAR Models for Polo-Like Kinase-1 Inhibitors
title_sort Linear Regression QSAR Models for Polo-Like Kinase-1 Inhibitors
dc.creator.none.fl_str_mv Duchowicz, Pablo Román
author Duchowicz, Pablo Román
author_facet Duchowicz, Pablo Román
author_role author
dc.subject.none.fl_str_mv Biología
Polo-like kinase-1 inhibitors
Quantitative structure-activity relationships
Half-maximal inhibitory concentration
Replacement method
Molecular descriptors
topic Biología
Polo-like kinase-1 inhibitors
Quantitative structure-activity relationships
Half-maximal inhibitory concentration
Replacement method
Molecular descriptors
dc.description.none.fl_txt_mv A structurally diverse dataset of 530 polo-like kinase-1 (PLK1) inhibitors is compiled from the ChEMBL database and studied by means of a conformation-independent quantitative structure-activity relationship (QSAR) approach. A large number (26,761) of molecular descriptors are explored with the main intention of capturing the most relevant structural characteristics affecting the bioactivity. The structural descriptors are derived with different freeware, such as PaDEL, Mold2, and QuBiLs-MAS; such descriptor software complements each other and improves the QSAR results. The best multivariable linear regression models are found with the replacement method variable subset selection technique. The balanced subsets method partitions the dataset into training, validation, and test sets. It is found that the proposed linear QSAR model improves previously reported models by leading to a simpler alternative structure-activity relationship.
Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas
description A structurally diverse dataset of 530 polo-like kinase-1 (PLK1) inhibitors is compiled from the ChEMBL database and studied by means of a conformation-independent quantitative structure-activity relationship (QSAR) approach. A large number (26,761) of molecular descriptors are explored with the main intention of capturing the most relevant structural characteristics affecting the bioactivity. The structural descriptors are derived with different freeware, such as PaDEL, Mold2, and QuBiLs-MAS; such descriptor software complements each other and improves the QSAR results. The best multivariable linear regression models are found with the replacement method variable subset selection technique. The balanced subsets method partitions the dataset into training, validation, and test sets. It is found that the proposed linear QSAR model improves previously reported models by leading to a simpler alternative structure-activity relationship.
publishDate 2018
dc.date.none.fl_str_mv 2018
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/125375
url http://sedici.unlp.edu.ar/handle/10915/125375
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/2073-4409
info:eu-repo/semantics/altIdentifier/doi/10.3390/cells7020013
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842260519129448448
score 13.13397