Linear Regression QSAR Models for Polo-Like Kinase-1 Inhibitors
- Autores
- Duchowicz, Pablo Román
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A structurally diverse dataset of 530 polo-like kinase-1 (PLK1) inhibitors is compiled from the ChEMBL database and studied by means of a conformation-independent quantitative structure-activity relationship (QSAR) approach. A large number (26,761) of molecular descriptors are explored with the main intention of capturing the most relevant structural characteristics affecting the bioactivity. The structural descriptors are derived with different freeware, such as PaDEL, Mold2, and QuBiLs-MAS; such descriptor software complements each other and improves the QSAR results. The best multivariable linear regression models are found with the replacement method variable subset selection technique. The balanced subsets method partitions the dataset into training, validation, and test sets. It is found that the proposed linear QSAR model improves previously reported models by leading to a simpler alternative structure-activity relationship.
Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas - Materia
-
Biología
Polo-like kinase-1 inhibitors
Quantitative structure-activity relationships
Half-maximal inhibitory concentration
Replacement method
Molecular descriptors - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/125375
Ver los metadatos del registro completo
id |
SEDICI_ffc8b858073f6757f3724a16418f4b65 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/125375 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Linear Regression QSAR Models for Polo-Like Kinase-1 InhibitorsDuchowicz, Pablo RománBiologíaPolo-like kinase-1 inhibitorsQuantitative structure-activity relationshipsHalf-maximal inhibitory concentrationReplacement methodMolecular descriptorsA structurally diverse dataset of 530 polo-like kinase-1 (PLK1) inhibitors is compiled from the ChEMBL database and studied by means of a conformation-independent quantitative structure-activity relationship (QSAR) approach. A large number (26,761) of molecular descriptors are explored with the main intention of capturing the most relevant structural characteristics affecting the bioactivity. The structural descriptors are derived with different freeware, such as PaDEL, Mold2, and QuBiLs-MAS; such descriptor software complements each other and improves the QSAR results. The best multivariable linear regression models are found with the replacement method variable subset selection technique. The balanced subsets method partitions the dataset into training, validation, and test sets. It is found that the proposed linear QSAR model improves previously reported models by leading to a simpler alternative structure-activity relationship.Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas2018info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/125375enginfo:eu-repo/semantics/altIdentifier/issn/2073-4409info:eu-repo/semantics/altIdentifier/doi/10.3390/cells7020013info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T11:02:08Zoai:sedici.unlp.edu.ar:10915/125375Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 11:02:08.972SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Linear Regression QSAR Models for Polo-Like Kinase-1 Inhibitors |
title |
Linear Regression QSAR Models for Polo-Like Kinase-1 Inhibitors |
spellingShingle |
Linear Regression QSAR Models for Polo-Like Kinase-1 Inhibitors Duchowicz, Pablo Román Biología Polo-like kinase-1 inhibitors Quantitative structure-activity relationships Half-maximal inhibitory concentration Replacement method Molecular descriptors |
title_short |
Linear Regression QSAR Models for Polo-Like Kinase-1 Inhibitors |
title_full |
Linear Regression QSAR Models for Polo-Like Kinase-1 Inhibitors |
title_fullStr |
Linear Regression QSAR Models for Polo-Like Kinase-1 Inhibitors |
title_full_unstemmed |
Linear Regression QSAR Models for Polo-Like Kinase-1 Inhibitors |
title_sort |
Linear Regression QSAR Models for Polo-Like Kinase-1 Inhibitors |
dc.creator.none.fl_str_mv |
Duchowicz, Pablo Román |
author |
Duchowicz, Pablo Román |
author_facet |
Duchowicz, Pablo Román |
author_role |
author |
dc.subject.none.fl_str_mv |
Biología Polo-like kinase-1 inhibitors Quantitative structure-activity relationships Half-maximal inhibitory concentration Replacement method Molecular descriptors |
topic |
Biología Polo-like kinase-1 inhibitors Quantitative structure-activity relationships Half-maximal inhibitory concentration Replacement method Molecular descriptors |
dc.description.none.fl_txt_mv |
A structurally diverse dataset of 530 polo-like kinase-1 (PLK1) inhibitors is compiled from the ChEMBL database and studied by means of a conformation-independent quantitative structure-activity relationship (QSAR) approach. A large number (26,761) of molecular descriptors are explored with the main intention of capturing the most relevant structural characteristics affecting the bioactivity. The structural descriptors are derived with different freeware, such as PaDEL, Mold2, and QuBiLs-MAS; such descriptor software complements each other and improves the QSAR results. The best multivariable linear regression models are found with the replacement method variable subset selection technique. The balanced subsets method partitions the dataset into training, validation, and test sets. It is found that the proposed linear QSAR model improves previously reported models by leading to a simpler alternative structure-activity relationship. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas |
description |
A structurally diverse dataset of 530 polo-like kinase-1 (PLK1) inhibitors is compiled from the ChEMBL database and studied by means of a conformation-independent quantitative structure-activity relationship (QSAR) approach. A large number (26,761) of molecular descriptors are explored with the main intention of capturing the most relevant structural characteristics affecting the bioactivity. The structural descriptors are derived with different freeware, such as PaDEL, Mold2, and QuBiLs-MAS; such descriptor software complements each other and improves the QSAR results. The best multivariable linear regression models are found with the replacement method variable subset selection technique. The balanced subsets method partitions the dataset into training, validation, and test sets. It is found that the proposed linear QSAR model improves previously reported models by leading to a simpler alternative structure-activity relationship. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/125375 |
url |
http://sedici.unlp.edu.ar/handle/10915/125375 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/2073-4409 info:eu-repo/semantics/altIdentifier/doi/10.3390/cells7020013 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260519129448448 |
score |
13.13397 |