QSAR models for thiophene and imidazopyridine derivatives inhibitors of the Polo-Like Kinase 1
- Autores
- Comelli, Nieves Carolina; Duchowicz, Pablo Román; Castro, Eduardo Alberto
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The inhibitory activity of 103 thiophene and 33 imidazopyridine derivatives against Polo-Like Kinase 1 (PLK1) expressed as pIC50 (log IC50) was predicted by QSAR modeling. Multivariate linear regression (MLR) was employed to model the relationship between 0D and 3D molecular descriptors and biological activities of molecules using the replacement method (MR) as variable selection tool. The 136 compounds were separated into several training and test sets. Two splitting approaches, distribution of biological data and structural diversity, and the statistical experimental design procedure Doptimal distance were applied to the dataset. The significance of the training set models was confirmed by statistically higher values of the internal leave one out cross-validated coefficient of determination (Q2) and external predictive coefficient of determination for the test set (R2 test). The model developed from a training set, obtained with the D-optimal distance protocol and using 3D descriptor space along with activity values, separated chemical features that allowed to distinguish high and low pIC50 values reasonably well. Then, we verified that such model was sufficient to reliably and accurately predict the activity of external diverse structures. The model robustness was properly characterized by means of standard procedures and their applicability domain (AD) was analyzed by leverage method.
Fil: Comelli, Nieves Carolina. Universidad Nacional de Catamarca. Facultad de Ciencias Agrarias; Argentina
Fil: Duchowicz, Pablo Román. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
Fil: Castro, Eduardo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina - Materia
-
Chemoinformatics
Multivariate Linear Regression Analysis
Polo-Like Kinase 1 (Plk1) Inhibitors
Thiophene And Imidazopyridines Derivatives - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/5267
Ver los metadatos del registro completo
id |
CONICETDig_671489f3a3b0e9b47cd435feab3a082e |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/5267 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
QSAR models for thiophene and imidazopyridine derivatives inhibitors of the Polo-Like Kinase 1Comelli, Nieves CarolinaDuchowicz, Pablo RománCastro, Eduardo AlbertoChemoinformaticsMultivariate Linear Regression AnalysisPolo-Like Kinase 1 (Plk1) InhibitorsThiophene And Imidazopyridines Derivativeshttps://purl.org/becyt/ford/3.1https://purl.org/becyt/ford/3The inhibitory activity of 103 thiophene and 33 imidazopyridine derivatives against Polo-Like Kinase 1 (PLK1) expressed as pIC50 (log IC50) was predicted by QSAR modeling. Multivariate linear regression (MLR) was employed to model the relationship between 0D and 3D molecular descriptors and biological activities of molecules using the replacement method (MR) as variable selection tool. The 136 compounds were separated into several training and test sets. Two splitting approaches, distribution of biological data and structural diversity, and the statistical experimental design procedure Doptimal distance were applied to the dataset. The significance of the training set models was confirmed by statistically higher values of the internal leave one out cross-validated coefficient of determination (Q2) and external predictive coefficient of determination for the test set (R2 test). The model developed from a training set, obtained with the D-optimal distance protocol and using 3D descriptor space along with activity values, separated chemical features that allowed to distinguish high and low pIC50 values reasonably well. Then, we verified that such model was sufficient to reliably and accurately predict the activity of external diverse structures. The model robustness was properly characterized by means of standard procedures and their applicability domain (AD) was analyzed by leverage method.Fil: Comelli, Nieves Carolina. Universidad Nacional de Catamarca. Facultad de Ciencias Agrarias; ArgentinaFil: Duchowicz, Pablo Román. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Castro, Eduardo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaElsevier Science2014-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/5267Comelli, Nieves Carolina; Duchowicz, Pablo Román; Castro, Eduardo Alberto; QSAR models for thiophene and imidazopyridine derivatives inhibitors of the Polo-Like Kinase 1; Elsevier Science; European Journal Of Pharmaceutical Sciences; 62; 5-2014; 171-1790928-0987enginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0928098714002589info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ejps.2014.05.029info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:53:40Zoai:ri.conicet.gov.ar:11336/5267instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:53:40.394CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
QSAR models for thiophene and imidazopyridine derivatives inhibitors of the Polo-Like Kinase 1 |
title |
QSAR models for thiophene and imidazopyridine derivatives inhibitors of the Polo-Like Kinase 1 |
spellingShingle |
QSAR models for thiophene and imidazopyridine derivatives inhibitors of the Polo-Like Kinase 1 Comelli, Nieves Carolina Chemoinformatics Multivariate Linear Regression Analysis Polo-Like Kinase 1 (Plk1) Inhibitors Thiophene And Imidazopyridines Derivatives |
title_short |
QSAR models for thiophene and imidazopyridine derivatives inhibitors of the Polo-Like Kinase 1 |
title_full |
QSAR models for thiophene and imidazopyridine derivatives inhibitors of the Polo-Like Kinase 1 |
title_fullStr |
QSAR models for thiophene and imidazopyridine derivatives inhibitors of the Polo-Like Kinase 1 |
title_full_unstemmed |
QSAR models for thiophene and imidazopyridine derivatives inhibitors of the Polo-Like Kinase 1 |
title_sort |
QSAR models for thiophene and imidazopyridine derivatives inhibitors of the Polo-Like Kinase 1 |
dc.creator.none.fl_str_mv |
Comelli, Nieves Carolina Duchowicz, Pablo Román Castro, Eduardo Alberto |
author |
Comelli, Nieves Carolina |
author_facet |
Comelli, Nieves Carolina Duchowicz, Pablo Román Castro, Eduardo Alberto |
author_role |
author |
author2 |
Duchowicz, Pablo Román Castro, Eduardo Alberto |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Chemoinformatics Multivariate Linear Regression Analysis Polo-Like Kinase 1 (Plk1) Inhibitors Thiophene And Imidazopyridines Derivatives |
topic |
Chemoinformatics Multivariate Linear Regression Analysis Polo-Like Kinase 1 (Plk1) Inhibitors Thiophene And Imidazopyridines Derivatives |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/3.1 https://purl.org/becyt/ford/3 |
dc.description.none.fl_txt_mv |
The inhibitory activity of 103 thiophene and 33 imidazopyridine derivatives against Polo-Like Kinase 1 (PLK1) expressed as pIC50 (log IC50) was predicted by QSAR modeling. Multivariate linear regression (MLR) was employed to model the relationship between 0D and 3D molecular descriptors and biological activities of molecules using the replacement method (MR) as variable selection tool. The 136 compounds were separated into several training and test sets. Two splitting approaches, distribution of biological data and structural diversity, and the statistical experimental design procedure Doptimal distance were applied to the dataset. The significance of the training set models was confirmed by statistically higher values of the internal leave one out cross-validated coefficient of determination (Q2) and external predictive coefficient of determination for the test set (R2 test). The model developed from a training set, obtained with the D-optimal distance protocol and using 3D descriptor space along with activity values, separated chemical features that allowed to distinguish high and low pIC50 values reasonably well. Then, we verified that such model was sufficient to reliably and accurately predict the activity of external diverse structures. The model robustness was properly characterized by means of standard procedures and their applicability domain (AD) was analyzed by leverage method. Fil: Comelli, Nieves Carolina. Universidad Nacional de Catamarca. Facultad de Ciencias Agrarias; Argentina Fil: Duchowicz, Pablo Román. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina Fil: Castro, Eduardo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina |
description |
The inhibitory activity of 103 thiophene and 33 imidazopyridine derivatives against Polo-Like Kinase 1 (PLK1) expressed as pIC50 (log IC50) was predicted by QSAR modeling. Multivariate linear regression (MLR) was employed to model the relationship between 0D and 3D molecular descriptors and biological activities of molecules using the replacement method (MR) as variable selection tool. The 136 compounds were separated into several training and test sets. Two splitting approaches, distribution of biological data and structural diversity, and the statistical experimental design procedure Doptimal distance were applied to the dataset. The significance of the training set models was confirmed by statistically higher values of the internal leave one out cross-validated coefficient of determination (Q2) and external predictive coefficient of determination for the test set (R2 test). The model developed from a training set, obtained with the D-optimal distance protocol and using 3D descriptor space along with activity values, separated chemical features that allowed to distinguish high and low pIC50 values reasonably well. Then, we verified that such model was sufficient to reliably and accurately predict the activity of external diverse structures. The model robustness was properly characterized by means of standard procedures and their applicability domain (AD) was analyzed by leverage method. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/5267 Comelli, Nieves Carolina; Duchowicz, Pablo Román; Castro, Eduardo Alberto; QSAR models for thiophene and imidazopyridine derivatives inhibitors of the Polo-Like Kinase 1; Elsevier Science; European Journal Of Pharmaceutical Sciences; 62; 5-2014; 171-179 0928-0987 |
url |
http://hdl.handle.net/11336/5267 |
identifier_str_mv |
Comelli, Nieves Carolina; Duchowicz, Pablo Román; Castro, Eduardo Alberto; QSAR models for thiophene and imidazopyridine derivatives inhibitors of the Polo-Like Kinase 1; Elsevier Science; European Journal Of Pharmaceutical Sciences; 62; 5-2014; 171-179 0928-0987 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0928098714002589 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ejps.2014.05.029 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269240601608192 |
score |
13.13397 |