Explicit solutions for one-dimensional two-phase free boundary problems with either shrinkage or expansion
- Autores
- Natale, María Fernanda; Santillan Marcus, Eduardo Adrian; Tarzia, Domingo Alberto
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We consider a one-dimensional solidification of a pure substance which is initially in liquid state in a bounded interval. Initially, the liquid is above the freezing temperature, and cooling is applied at x= 0 while the other end x= l is kept adiabatic. At the time t = 0, the temperature of the liquid at x= 0 comes down to the freezing point and solidification begins, where x=s(t) is the position of the solid-liquid interface. As the liquid solidifies, it shrinks (0 < r < 1) or expands (r < 0) and appears a region between x=0 and x= rs(t), with r < 1. Temperature distributions of the solid and liquid phases and the position of the two free boundaries (x= rs(t) and x= s(t)) in the solidification process are studied. For three different cases, changing the condition on the free boundary x= rs(t) (temperature boundary condition, heat flux boundary condition and convective boundary condition) an explicit solution is obtained. Moreover, the solution of each problem is given as a function of a parameter which is the unique solution of a transcendental equation and for two of the three cases a condition on the parameter must be verified by data of the problem in order to have an instantaneous phase-change process. In all the cases, the explicit solution is given by a representation of the similarity type.
Fil: Natale, María Fernanda. Universidad Austral; Argentina
Fil: Santillan Marcus, Eduardo Adrian. Universidad Austral; Argentina
Fil: Tarzia, Domingo Alberto. Universidad Austral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina - Materia
-
STEFAN PROBLEM
SOLIDIFICATION PROBLEM
FREE BOUNDARY PROBLEM
SHRINKAGE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/242087
Ver los metadatos del registro completo
id |
CONICETDig_30abaa7421ff9d37629644a7c1caa109 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/242087 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Explicit solutions for one-dimensional two-phase free boundary problems with either shrinkage or expansionNatale, María FernandaSantillan Marcus, Eduardo AdrianTarzia, Domingo AlbertoSTEFAN PROBLEMSOLIDIFICATION PROBLEMFREE BOUNDARY PROBLEMSHRINKAGEhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We consider a one-dimensional solidification of a pure substance which is initially in liquid state in a bounded interval. Initially, the liquid is above the freezing temperature, and cooling is applied at x= 0 while the other end x= l is kept adiabatic. At the time t = 0, the temperature of the liquid at x= 0 comes down to the freezing point and solidification begins, where x=s(t) is the position of the solid-liquid interface. As the liquid solidifies, it shrinks (0 < r < 1) or expands (r < 0) and appears a region between x=0 and x= rs(t), with r < 1. Temperature distributions of the solid and liquid phases and the position of the two free boundaries (x= rs(t) and x= s(t)) in the solidification process are studied. For three different cases, changing the condition on the free boundary x= rs(t) (temperature boundary condition, heat flux boundary condition and convective boundary condition) an explicit solution is obtained. Moreover, the solution of each problem is given as a function of a parameter which is the unique solution of a transcendental equation and for two of the three cases a condition on the parameter must be verified by data of the problem in order to have an instantaneous phase-change process. In all the cases, the explicit solution is given by a representation of the similarity type.Fil: Natale, María Fernanda. Universidad Austral; ArgentinaFil: Santillan Marcus, Eduardo Adrian. Universidad Austral; ArgentinaFil: Tarzia, Domingo Alberto. Universidad Austral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; ArgentinaPergamon-Elsevier Science Ltd2010-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/242087Natale, María Fernanda; Santillan Marcus, Eduardo Adrian; Tarzia, Domingo Alberto; Explicit solutions for one-dimensional two-phase free boundary problems with either shrinkage or expansion; Pergamon-Elsevier Science Ltd; Nonlinear Analysis-real World Applications; 11; 3; 3-2010; 1946-19521468-1218CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S146812180900203Xinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.nonrwa.2009.04.014info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T11:59:00Zoai:ri.conicet.gov.ar:11336/242087instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 11:59:00.493CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Explicit solutions for one-dimensional two-phase free boundary problems with either shrinkage or expansion |
title |
Explicit solutions for one-dimensional two-phase free boundary problems with either shrinkage or expansion |
spellingShingle |
Explicit solutions for one-dimensional two-phase free boundary problems with either shrinkage or expansion Natale, María Fernanda STEFAN PROBLEM SOLIDIFICATION PROBLEM FREE BOUNDARY PROBLEM SHRINKAGE |
title_short |
Explicit solutions for one-dimensional two-phase free boundary problems with either shrinkage or expansion |
title_full |
Explicit solutions for one-dimensional two-phase free boundary problems with either shrinkage or expansion |
title_fullStr |
Explicit solutions for one-dimensional two-phase free boundary problems with either shrinkage or expansion |
title_full_unstemmed |
Explicit solutions for one-dimensional two-phase free boundary problems with either shrinkage or expansion |
title_sort |
Explicit solutions for one-dimensional two-phase free boundary problems with either shrinkage or expansion |
dc.creator.none.fl_str_mv |
Natale, María Fernanda Santillan Marcus, Eduardo Adrian Tarzia, Domingo Alberto |
author |
Natale, María Fernanda |
author_facet |
Natale, María Fernanda Santillan Marcus, Eduardo Adrian Tarzia, Domingo Alberto |
author_role |
author |
author2 |
Santillan Marcus, Eduardo Adrian Tarzia, Domingo Alberto |
author2_role |
author author |
dc.subject.none.fl_str_mv |
STEFAN PROBLEM SOLIDIFICATION PROBLEM FREE BOUNDARY PROBLEM SHRINKAGE |
topic |
STEFAN PROBLEM SOLIDIFICATION PROBLEM FREE BOUNDARY PROBLEM SHRINKAGE |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We consider a one-dimensional solidification of a pure substance which is initially in liquid state in a bounded interval. Initially, the liquid is above the freezing temperature, and cooling is applied at x= 0 while the other end x= l is kept adiabatic. At the time t = 0, the temperature of the liquid at x= 0 comes down to the freezing point and solidification begins, where x=s(t) is the position of the solid-liquid interface. As the liquid solidifies, it shrinks (0 < r < 1) or expands (r < 0) and appears a region between x=0 and x= rs(t), with r < 1. Temperature distributions of the solid and liquid phases and the position of the two free boundaries (x= rs(t) and x= s(t)) in the solidification process are studied. For three different cases, changing the condition on the free boundary x= rs(t) (temperature boundary condition, heat flux boundary condition and convective boundary condition) an explicit solution is obtained. Moreover, the solution of each problem is given as a function of a parameter which is the unique solution of a transcendental equation and for two of the three cases a condition on the parameter must be verified by data of the problem in order to have an instantaneous phase-change process. In all the cases, the explicit solution is given by a representation of the similarity type. Fil: Natale, María Fernanda. Universidad Austral; Argentina Fil: Santillan Marcus, Eduardo Adrian. Universidad Austral; Argentina Fil: Tarzia, Domingo Alberto. Universidad Austral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina |
description |
We consider a one-dimensional solidification of a pure substance which is initially in liquid state in a bounded interval. Initially, the liquid is above the freezing temperature, and cooling is applied at x= 0 while the other end x= l is kept adiabatic. At the time t = 0, the temperature of the liquid at x= 0 comes down to the freezing point and solidification begins, where x=s(t) is the position of the solid-liquid interface. As the liquid solidifies, it shrinks (0 < r < 1) or expands (r < 0) and appears a region between x=0 and x= rs(t), with r < 1. Temperature distributions of the solid and liquid phases and the position of the two free boundaries (x= rs(t) and x= s(t)) in the solidification process are studied. For three different cases, changing the condition on the free boundary x= rs(t) (temperature boundary condition, heat flux boundary condition and convective boundary condition) an explicit solution is obtained. Moreover, the solution of each problem is given as a function of a parameter which is the unique solution of a transcendental equation and for two of the three cases a condition on the parameter must be verified by data of the problem in order to have an instantaneous phase-change process. In all the cases, the explicit solution is given by a representation of the similarity type. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/242087 Natale, María Fernanda; Santillan Marcus, Eduardo Adrian; Tarzia, Domingo Alberto; Explicit solutions for one-dimensional two-phase free boundary problems with either shrinkage or expansion; Pergamon-Elsevier Science Ltd; Nonlinear Analysis-real World Applications; 11; 3; 3-2010; 1946-1952 1468-1218 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/242087 |
identifier_str_mv |
Natale, María Fernanda; Santillan Marcus, Eduardo Adrian; Tarzia, Domingo Alberto; Explicit solutions for one-dimensional two-phase free boundary problems with either shrinkage or expansion; Pergamon-Elsevier Science Ltd; Nonlinear Analysis-real World Applications; 11; 3; 3-2010; 1946-1952 1468-1218 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S146812180900203X info:eu-repo/semantics/altIdentifier/doi/10.1016/j.nonrwa.2009.04.014 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1843606933932605440 |
score |
13.001348 |