Explicit solutions for one-dimensional two-phase free boundary problems with either shrinkage or expansion

Autores
Natale, María Fernanda; Santillan Marcus, Eduardo Adrian; Tarzia, Domingo Alberto
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We consider a one-dimensional solidification of a pure substance which is initially in liquid state in a bounded interval. Initially, the liquid is above the freezing temperature, and cooling is applied at x= 0 while the other end x= l is kept adiabatic. At the time t = 0, the temperature of the liquid at x= 0 comes down to the freezing point and solidification begins, where x=s(t) is the position of the solid-liquid interface. As the liquid solidifies, it shrinks (0 < r < 1) or expands (r < 0) and appears a region between x=0 and x= rs(t), with r < 1. Temperature distributions of the solid and liquid phases and the position of the two free boundaries (x= rs(t) and x= s(t)) in the solidification process are studied. For three different cases, changing the condition on the free boundary x= rs(t) (temperature boundary condition, heat flux boundary condition and convective boundary condition) an explicit solution is obtained. Moreover, the solution of each problem is given as a function of a parameter which is the unique solution of a transcendental equation and for two of the three cases a condition on the parameter must be verified by data of the problem in order to have an instantaneous phase-change process. In all the cases, the explicit solution is given by a representation of the similarity type.
Fil: Natale, María Fernanda. Universidad Austral; Argentina
Fil: Santillan Marcus, Eduardo Adrian. Universidad Austral; Argentina
Fil: Tarzia, Domingo Alberto. Universidad Austral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina
Materia
STEFAN PROBLEM
SOLIDIFICATION PROBLEM
FREE BOUNDARY PROBLEM
SHRINKAGE
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/242087

id CONICETDig_30abaa7421ff9d37629644a7c1caa109
oai_identifier_str oai:ri.conicet.gov.ar:11336/242087
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Explicit solutions for one-dimensional two-phase free boundary problems with either shrinkage or expansionNatale, María FernandaSantillan Marcus, Eduardo AdrianTarzia, Domingo AlbertoSTEFAN PROBLEMSOLIDIFICATION PROBLEMFREE BOUNDARY PROBLEMSHRINKAGEhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We consider a one-dimensional solidification of a pure substance which is initially in liquid state in a bounded interval. Initially, the liquid is above the freezing temperature, and cooling is applied at x= 0 while the other end x= l is kept adiabatic. At the time t = 0, the temperature of the liquid at x= 0 comes down to the freezing point and solidification begins, where x=s(t) is the position of the solid-liquid interface. As the liquid solidifies, it shrinks (0 < r < 1) or expands (r < 0) and appears a region between x=0 and x= rs(t), with r < 1. Temperature distributions of the solid and liquid phases and the position of the two free boundaries (x= rs(t) and x= s(t)) in the solidification process are studied. For three different cases, changing the condition on the free boundary x= rs(t) (temperature boundary condition, heat flux boundary condition and convective boundary condition) an explicit solution is obtained. Moreover, the solution of each problem is given as a function of a parameter which is the unique solution of a transcendental equation and for two of the three cases a condition on the parameter must be verified by data of the problem in order to have an instantaneous phase-change process. In all the cases, the explicit solution is given by a representation of the similarity type.Fil: Natale, María Fernanda. Universidad Austral; ArgentinaFil: Santillan Marcus, Eduardo Adrian. Universidad Austral; ArgentinaFil: Tarzia, Domingo Alberto. Universidad Austral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; ArgentinaPergamon-Elsevier Science Ltd2010-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/242087Natale, María Fernanda; Santillan Marcus, Eduardo Adrian; Tarzia, Domingo Alberto; Explicit solutions for one-dimensional two-phase free boundary problems with either shrinkage or expansion; Pergamon-Elsevier Science Ltd; Nonlinear Analysis-real World Applications; 11; 3; 3-2010; 1946-19521468-1218CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S146812180900203Xinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.nonrwa.2009.04.014info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T11:59:00Zoai:ri.conicet.gov.ar:11336/242087instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 11:59:00.493CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Explicit solutions for one-dimensional two-phase free boundary problems with either shrinkage or expansion
title Explicit solutions for one-dimensional two-phase free boundary problems with either shrinkage or expansion
spellingShingle Explicit solutions for one-dimensional two-phase free boundary problems with either shrinkage or expansion
Natale, María Fernanda
STEFAN PROBLEM
SOLIDIFICATION PROBLEM
FREE BOUNDARY PROBLEM
SHRINKAGE
title_short Explicit solutions for one-dimensional two-phase free boundary problems with either shrinkage or expansion
title_full Explicit solutions for one-dimensional two-phase free boundary problems with either shrinkage or expansion
title_fullStr Explicit solutions for one-dimensional two-phase free boundary problems with either shrinkage or expansion
title_full_unstemmed Explicit solutions for one-dimensional two-phase free boundary problems with either shrinkage or expansion
title_sort Explicit solutions for one-dimensional two-phase free boundary problems with either shrinkage or expansion
dc.creator.none.fl_str_mv Natale, María Fernanda
Santillan Marcus, Eduardo Adrian
Tarzia, Domingo Alberto
author Natale, María Fernanda
author_facet Natale, María Fernanda
Santillan Marcus, Eduardo Adrian
Tarzia, Domingo Alberto
author_role author
author2 Santillan Marcus, Eduardo Adrian
Tarzia, Domingo Alberto
author2_role author
author
dc.subject.none.fl_str_mv STEFAN PROBLEM
SOLIDIFICATION PROBLEM
FREE BOUNDARY PROBLEM
SHRINKAGE
topic STEFAN PROBLEM
SOLIDIFICATION PROBLEM
FREE BOUNDARY PROBLEM
SHRINKAGE
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We consider a one-dimensional solidification of a pure substance which is initially in liquid state in a bounded interval. Initially, the liquid is above the freezing temperature, and cooling is applied at x= 0 while the other end x= l is kept adiabatic. At the time t = 0, the temperature of the liquid at x= 0 comes down to the freezing point and solidification begins, where x=s(t) is the position of the solid-liquid interface. As the liquid solidifies, it shrinks (0 < r < 1) or expands (r < 0) and appears a region between x=0 and x= rs(t), with r < 1. Temperature distributions of the solid and liquid phases and the position of the two free boundaries (x= rs(t) and x= s(t)) in the solidification process are studied. For three different cases, changing the condition on the free boundary x= rs(t) (temperature boundary condition, heat flux boundary condition and convective boundary condition) an explicit solution is obtained. Moreover, the solution of each problem is given as a function of a parameter which is the unique solution of a transcendental equation and for two of the three cases a condition on the parameter must be verified by data of the problem in order to have an instantaneous phase-change process. In all the cases, the explicit solution is given by a representation of the similarity type.
Fil: Natale, María Fernanda. Universidad Austral; Argentina
Fil: Santillan Marcus, Eduardo Adrian. Universidad Austral; Argentina
Fil: Tarzia, Domingo Alberto. Universidad Austral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina
description We consider a one-dimensional solidification of a pure substance which is initially in liquid state in a bounded interval. Initially, the liquid is above the freezing temperature, and cooling is applied at x= 0 while the other end x= l is kept adiabatic. At the time t = 0, the temperature of the liquid at x= 0 comes down to the freezing point and solidification begins, where x=s(t) is the position of the solid-liquid interface. As the liquid solidifies, it shrinks (0 < r < 1) or expands (r < 0) and appears a region between x=0 and x= rs(t), with r < 1. Temperature distributions of the solid and liquid phases and the position of the two free boundaries (x= rs(t) and x= s(t)) in the solidification process are studied. For three different cases, changing the condition on the free boundary x= rs(t) (temperature boundary condition, heat flux boundary condition and convective boundary condition) an explicit solution is obtained. Moreover, the solution of each problem is given as a function of a parameter which is the unique solution of a transcendental equation and for two of the three cases a condition on the parameter must be verified by data of the problem in order to have an instantaneous phase-change process. In all the cases, the explicit solution is given by a representation of the similarity type.
publishDate 2010
dc.date.none.fl_str_mv 2010-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/242087
Natale, María Fernanda; Santillan Marcus, Eduardo Adrian; Tarzia, Domingo Alberto; Explicit solutions for one-dimensional two-phase free boundary problems with either shrinkage or expansion; Pergamon-Elsevier Science Ltd; Nonlinear Analysis-real World Applications; 11; 3; 3-2010; 1946-1952
1468-1218
CONICET Digital
CONICET
url http://hdl.handle.net/11336/242087
identifier_str_mv Natale, María Fernanda; Santillan Marcus, Eduardo Adrian; Tarzia, Domingo Alberto; Explicit solutions for one-dimensional two-phase free boundary problems with either shrinkage or expansion; Pergamon-Elsevier Science Ltd; Nonlinear Analysis-real World Applications; 11; 3; 3-2010; 1946-1952
1468-1218
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S146812180900203X
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.nonrwa.2009.04.014
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1843606933932605440
score 13.001348