Graph neural networks and molecular docking as two complementary approaches for virtual screening: a case study on Cruzain
- Autores
- Luchi, Adriano Martín; Gómez Chávez, José Leonardo; Villafañe, Roxana Noelia; Conti, German Andrés; Perez, Ernesto Rafael; Angelina, Emilio Luis; Peruchena, Nelida Maria
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The idea behind virtual screening is to first test compounds computationally in order to reduce the number of compounds that need to be screened experimentally, thus reducing the time and cost of physical experiments. Molecular docking is the most popular virtual screening technique, it predicts the binding of candidate compounds to the protein target by modeling the interactions at the binding pocket. Despite being widely used, docking accuracy is often low due to the difficulty of modeling inherently complex biological systems. On the other hand, state of the art deep neural networks, like Graph Convolutional Networks (GCNs) are able to capture the complex non-linear relationships between structural and biological data, but they lack the interpretability of structure-based modeling. In this work we took advantage of the activity data from a quantitative High Throughput Screen (HTS) of ~200K compounds against Cruzain (Cz) to retrospectively evaluate the ability of a docking algorithm and a Graph Convolutional Network for prioritizing the active compounds from the dataset. We then propose strategies to combine both techniques in a single virtual screening pipeline in order to exploit their orthogonal benefits. By plugging in the atomic embeddings learned by the GCN into the docking algorithm by means of pharmacophoric restraints, docking ability to retrieve the active ligands was enhanced. Moreover, by applying the GCN as a pre-docking filter, the compound’s library was enriched in active molecules and subsequent docking of the filtered library achieved significantly higher hit rates. This work aims to be a proof of concept of the usefulness of combination strategies involving deep learning and classical molecular docking techniques, in the context of drug discovery.
Fil: Luchi, Adriano Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina
Fil: Gómez Chávez, José Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina
Fil: Villafañe, Roxana Noelia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina
Fil: Conti, German Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina
Fil: Perez, Ernesto Rafael. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina
Fil: Angelina, Emilio Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina
Fil: Peruchena, Nelida Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina - Materia
-
GRAPH NEURAL NETWORK
DOCKING
CHAGAS DISEASE-CRUZAIN
STRUCTURE /LIGAND BASED VIRTUAL SCREANING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/257076
Ver los metadatos del registro completo
id |
CONICETDig_3013184bc27847b82c67f860f04ea612 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/257076 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Graph neural networks and molecular docking as two complementary approaches for virtual screening: a case study on CruzainLuchi, Adriano MartínGómez Chávez, José LeonardoVillafañe, Roxana NoeliaConti, German AndrésPerez, Ernesto RafaelAngelina, Emilio LuisPeruchena, Nelida MariaGRAPH NEURAL NETWORKDOCKINGCHAGAS DISEASE-CRUZAINSTRUCTURE /LIGAND BASED VIRTUAL SCREANINGhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1The idea behind virtual screening is to first test compounds computationally in order to reduce the number of compounds that need to be screened experimentally, thus reducing the time and cost of physical experiments. Molecular docking is the most popular virtual screening technique, it predicts the binding of candidate compounds to the protein target by modeling the interactions at the binding pocket. Despite being widely used, docking accuracy is often low due to the difficulty of modeling inherently complex biological systems. On the other hand, state of the art deep neural networks, like Graph Convolutional Networks (GCNs) are able to capture the complex non-linear relationships between structural and biological data, but they lack the interpretability of structure-based modeling. In this work we took advantage of the activity data from a quantitative High Throughput Screen (HTS) of ~200K compounds against Cruzain (Cz) to retrospectively evaluate the ability of a docking algorithm and a Graph Convolutional Network for prioritizing the active compounds from the dataset. We then propose strategies to combine both techniques in a single virtual screening pipeline in order to exploit their orthogonal benefits. By plugging in the atomic embeddings learned by the GCN into the docking algorithm by means of pharmacophoric restraints, docking ability to retrieve the active ligands was enhanced. Moreover, by applying the GCN as a pre-docking filter, the compound’s library was enriched in active molecules and subsequent docking of the filtered library achieved significantly higher hit rates. This work aims to be a proof of concept of the usefulness of combination strategies involving deep learning and classical molecular docking techniques, in the context of drug discovery.Fil: Luchi, Adriano Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; ArgentinaFil: Gómez Chávez, José Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; ArgentinaFil: Villafañe, Roxana Noelia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; ArgentinaFil: Conti, German Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; ArgentinaFil: Perez, Ernesto Rafael. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; ArgentinaFil: Angelina, Emilio Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; ArgentinaFil: Peruchena, Nelida Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; ArgentinaCHEMRxiv2022-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/257076Luchi, Adriano Martín; Gómez Chávez, José Leonardo; Villafañe, Roxana Noelia; Conti, German Andrés; Perez, Ernesto Rafael; et al.; Graph neural networks and molecular docking as two complementary approaches for virtual screening: a case study on Cruzain; CHEMRxiv; ChemRxiv; 12-2022; 1-392573-2293CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://chemrxiv.org/engage/chemrxiv/article-details/63a216b2dadddcb60195aecfinfo:eu-repo/semantics/altIdentifier/doi/10.26434/chemrxiv-2022-btz77info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:10:51Zoai:ri.conicet.gov.ar:11336/257076instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:10:51.325CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Graph neural networks and molecular docking as two complementary approaches for virtual screening: a case study on Cruzain |
title |
Graph neural networks and molecular docking as two complementary approaches for virtual screening: a case study on Cruzain |
spellingShingle |
Graph neural networks and molecular docking as two complementary approaches for virtual screening: a case study on Cruzain Luchi, Adriano Martín GRAPH NEURAL NETWORK DOCKING CHAGAS DISEASE-CRUZAIN STRUCTURE /LIGAND BASED VIRTUAL SCREANING |
title_short |
Graph neural networks and molecular docking as two complementary approaches for virtual screening: a case study on Cruzain |
title_full |
Graph neural networks and molecular docking as two complementary approaches for virtual screening: a case study on Cruzain |
title_fullStr |
Graph neural networks and molecular docking as two complementary approaches for virtual screening: a case study on Cruzain |
title_full_unstemmed |
Graph neural networks and molecular docking as two complementary approaches for virtual screening: a case study on Cruzain |
title_sort |
Graph neural networks and molecular docking as two complementary approaches for virtual screening: a case study on Cruzain |
dc.creator.none.fl_str_mv |
Luchi, Adriano Martín Gómez Chávez, José Leonardo Villafañe, Roxana Noelia Conti, German Andrés Perez, Ernesto Rafael Angelina, Emilio Luis Peruchena, Nelida Maria |
author |
Luchi, Adriano Martín |
author_facet |
Luchi, Adriano Martín Gómez Chávez, José Leonardo Villafañe, Roxana Noelia Conti, German Andrés Perez, Ernesto Rafael Angelina, Emilio Luis Peruchena, Nelida Maria |
author_role |
author |
author2 |
Gómez Chávez, José Leonardo Villafañe, Roxana Noelia Conti, German Andrés Perez, Ernesto Rafael Angelina, Emilio Luis Peruchena, Nelida Maria |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
GRAPH NEURAL NETWORK DOCKING CHAGAS DISEASE-CRUZAIN STRUCTURE /LIGAND BASED VIRTUAL SCREANING |
topic |
GRAPH NEURAL NETWORK DOCKING CHAGAS DISEASE-CRUZAIN STRUCTURE /LIGAND BASED VIRTUAL SCREANING |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The idea behind virtual screening is to first test compounds computationally in order to reduce the number of compounds that need to be screened experimentally, thus reducing the time and cost of physical experiments. Molecular docking is the most popular virtual screening technique, it predicts the binding of candidate compounds to the protein target by modeling the interactions at the binding pocket. Despite being widely used, docking accuracy is often low due to the difficulty of modeling inherently complex biological systems. On the other hand, state of the art deep neural networks, like Graph Convolutional Networks (GCNs) are able to capture the complex non-linear relationships between structural and biological data, but they lack the interpretability of structure-based modeling. In this work we took advantage of the activity data from a quantitative High Throughput Screen (HTS) of ~200K compounds against Cruzain (Cz) to retrospectively evaluate the ability of a docking algorithm and a Graph Convolutional Network for prioritizing the active compounds from the dataset. We then propose strategies to combine both techniques in a single virtual screening pipeline in order to exploit their orthogonal benefits. By plugging in the atomic embeddings learned by the GCN into the docking algorithm by means of pharmacophoric restraints, docking ability to retrieve the active ligands was enhanced. Moreover, by applying the GCN as a pre-docking filter, the compound’s library was enriched in active molecules and subsequent docking of the filtered library achieved significantly higher hit rates. This work aims to be a proof of concept of the usefulness of combination strategies involving deep learning and classical molecular docking techniques, in the context of drug discovery. Fil: Luchi, Adriano Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina Fil: Gómez Chávez, José Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina Fil: Villafañe, Roxana Noelia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina Fil: Conti, German Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina Fil: Perez, Ernesto Rafael. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina Fil: Angelina, Emilio Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina Fil: Peruchena, Nelida Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina |
description |
The idea behind virtual screening is to first test compounds computationally in order to reduce the number of compounds that need to be screened experimentally, thus reducing the time and cost of physical experiments. Molecular docking is the most popular virtual screening technique, it predicts the binding of candidate compounds to the protein target by modeling the interactions at the binding pocket. Despite being widely used, docking accuracy is often low due to the difficulty of modeling inherently complex biological systems. On the other hand, state of the art deep neural networks, like Graph Convolutional Networks (GCNs) are able to capture the complex non-linear relationships between structural and biological data, but they lack the interpretability of structure-based modeling. In this work we took advantage of the activity data from a quantitative High Throughput Screen (HTS) of ~200K compounds against Cruzain (Cz) to retrospectively evaluate the ability of a docking algorithm and a Graph Convolutional Network for prioritizing the active compounds from the dataset. We then propose strategies to combine both techniques in a single virtual screening pipeline in order to exploit their orthogonal benefits. By plugging in the atomic embeddings learned by the GCN into the docking algorithm by means of pharmacophoric restraints, docking ability to retrieve the active ligands was enhanced. Moreover, by applying the GCN as a pre-docking filter, the compound’s library was enriched in active molecules and subsequent docking of the filtered library achieved significantly higher hit rates. This work aims to be a proof of concept of the usefulness of combination strategies involving deep learning and classical molecular docking techniques, in the context of drug discovery. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/257076 Luchi, Adriano Martín; Gómez Chávez, José Leonardo; Villafañe, Roxana Noelia; Conti, German Andrés; Perez, Ernesto Rafael; et al.; Graph neural networks and molecular docking as two complementary approaches for virtual screening: a case study on Cruzain; CHEMRxiv; ChemRxiv; 12-2022; 1-39 2573-2293 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/257076 |
identifier_str_mv |
Luchi, Adriano Martín; Gómez Chávez, José Leonardo; Villafañe, Roxana Noelia; Conti, German Andrés; Perez, Ernesto Rafael; et al.; Graph neural networks and molecular docking as two complementary approaches for virtual screening: a case study on Cruzain; CHEMRxiv; ChemRxiv; 12-2022; 1-39 2573-2293 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://chemrxiv.org/engage/chemrxiv/article-details/63a216b2dadddcb60195aecf info:eu-repo/semantics/altIdentifier/doi/10.26434/chemrxiv-2022-btz77 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
CHEMRxiv |
publisher.none.fl_str_mv |
CHEMRxiv |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083256827510784 |
score |
13.22299 |