NNAlign: a platform to construct and evaluate artificial neural network models of receptor–ligand interactions

Autores
Nielsen, Morten; Andreatta, Massimo
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Peptides are extensively used to characterize functional or (linear) structural aspects of receptor–ligand interactions in biological systems, e.g. SH2, SH3, PDZ peptide-recognition domains, the MHC membrane receptors and enzymes such as kinases and phosphatases. NNAlign is a method for the identification of such linear motifs in biological sequences. The algorithm aligns the amino acid or nucleotide sequences provided as training set, and generates a model of the sequence motif detected in the data. The webserver allows setting up cross-validation experiments to estimate the performance of the model, as well as evaluations on independent data. Many features of the training sequences can be encoded as input, and the network architecture is highly customizable. The results returned by the server include a graphical representation of the motif identified by the method, performance values and a downloadable model that can be applied to scan protein sequences for occurrence of the motif. While its performance for the characterization of peptide–MHC interactions is widely documented, we extended NNAlign to be applicable to other receptor–ligand systems as well. Version 2.0 supports alignments with insertions and deletions, encoding of receptor pseudo-sequences, and custom alphabets for the training sequences. The server is available at http://www.cbs.dtu.dk/services/NNAlign-2.0.
Fil: Nielsen, Morten. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas ; Argentina. Technical University of Denmark; Dinamarca
Fil: Andreatta, Massimo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas ; Argentina
Materia
RECEPTOR-LIGAND INTERACTION
ARTIFICIAL NEURAL NETWORK
SEQUENCE ALIGNMENT
MACHINE LEARNING
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/48716

id CONICETDig_05d01a223f4e095e3b499c8cca196642
oai_identifier_str oai:ri.conicet.gov.ar:11336/48716
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling NNAlign: a platform to construct and evaluate artificial neural network models of receptor–ligand interactionsNielsen, MortenAndreatta, MassimoRECEPTOR-LIGAND INTERACTIONARTIFICIAL NEURAL NETWORKSEQUENCE ALIGNMENTMACHINE LEARNINGhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Peptides are extensively used to characterize functional or (linear) structural aspects of receptor–ligand interactions in biological systems, e.g. SH2, SH3, PDZ peptide-recognition domains, the MHC membrane receptors and enzymes such as kinases and phosphatases. NNAlign is a method for the identification of such linear motifs in biological sequences. The algorithm aligns the amino acid or nucleotide sequences provided as training set, and generates a model of the sequence motif detected in the data. The webserver allows setting up cross-validation experiments to estimate the performance of the model, as well as evaluations on independent data. Many features of the training sequences can be encoded as input, and the network architecture is highly customizable. The results returned by the server include a graphical representation of the motif identified by the method, performance values and a downloadable model that can be applied to scan protein sequences for occurrence of the motif. While its performance for the characterization of peptide–MHC interactions is widely documented, we extended NNAlign to be applicable to other receptor–ligand systems as well. Version 2.0 supports alignments with insertions and deletions, encoding of receptor pseudo-sequences, and custom alphabets for the training sequences. The server is available at http://www.cbs.dtu.dk/services/NNAlign-2.0.Fil: Nielsen, Morten. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas ; Argentina. Technical University of Denmark; DinamarcaFil: Andreatta, Massimo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas ; ArgentinaOxford University Press2017-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/48716Nielsen, Morten; Andreatta, Massimo; NNAlign: a platform to construct and evaluate artificial neural network models of receptor–ligand interactions; Oxford University Press; Nucleic Acids Research; 45; 1; 4-2017; 344-3490305-10481362-4962CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/nar/article/45/W1/W344/3605642info:eu-repo/semantics/altIdentifier/doi/10.1093/nar/gkx276info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:11:03Zoai:ri.conicet.gov.ar:11336/48716instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:11:03.492CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv NNAlign: a platform to construct and evaluate artificial neural network models of receptor–ligand interactions
title NNAlign: a platform to construct and evaluate artificial neural network models of receptor–ligand interactions
spellingShingle NNAlign: a platform to construct and evaluate artificial neural network models of receptor–ligand interactions
Nielsen, Morten
RECEPTOR-LIGAND INTERACTION
ARTIFICIAL NEURAL NETWORK
SEQUENCE ALIGNMENT
MACHINE LEARNING
title_short NNAlign: a platform to construct and evaluate artificial neural network models of receptor–ligand interactions
title_full NNAlign: a platform to construct and evaluate artificial neural network models of receptor–ligand interactions
title_fullStr NNAlign: a platform to construct and evaluate artificial neural network models of receptor–ligand interactions
title_full_unstemmed NNAlign: a platform to construct and evaluate artificial neural network models of receptor–ligand interactions
title_sort NNAlign: a platform to construct and evaluate artificial neural network models of receptor–ligand interactions
dc.creator.none.fl_str_mv Nielsen, Morten
Andreatta, Massimo
author Nielsen, Morten
author_facet Nielsen, Morten
Andreatta, Massimo
author_role author
author2 Andreatta, Massimo
author2_role author
dc.subject.none.fl_str_mv RECEPTOR-LIGAND INTERACTION
ARTIFICIAL NEURAL NETWORK
SEQUENCE ALIGNMENT
MACHINE LEARNING
topic RECEPTOR-LIGAND INTERACTION
ARTIFICIAL NEURAL NETWORK
SEQUENCE ALIGNMENT
MACHINE LEARNING
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Peptides are extensively used to characterize functional or (linear) structural aspects of receptor–ligand interactions in biological systems, e.g. SH2, SH3, PDZ peptide-recognition domains, the MHC membrane receptors and enzymes such as kinases and phosphatases. NNAlign is a method for the identification of such linear motifs in biological sequences. The algorithm aligns the amino acid or nucleotide sequences provided as training set, and generates a model of the sequence motif detected in the data. The webserver allows setting up cross-validation experiments to estimate the performance of the model, as well as evaluations on independent data. Many features of the training sequences can be encoded as input, and the network architecture is highly customizable. The results returned by the server include a graphical representation of the motif identified by the method, performance values and a downloadable model that can be applied to scan protein sequences for occurrence of the motif. While its performance for the characterization of peptide–MHC interactions is widely documented, we extended NNAlign to be applicable to other receptor–ligand systems as well. Version 2.0 supports alignments with insertions and deletions, encoding of receptor pseudo-sequences, and custom alphabets for the training sequences. The server is available at http://www.cbs.dtu.dk/services/NNAlign-2.0.
Fil: Nielsen, Morten. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas ; Argentina. Technical University of Denmark; Dinamarca
Fil: Andreatta, Massimo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas ; Argentina
description Peptides are extensively used to characterize functional or (linear) structural aspects of receptor–ligand interactions in biological systems, e.g. SH2, SH3, PDZ peptide-recognition domains, the MHC membrane receptors and enzymes such as kinases and phosphatases. NNAlign is a method for the identification of such linear motifs in biological sequences. The algorithm aligns the amino acid or nucleotide sequences provided as training set, and generates a model of the sequence motif detected in the data. The webserver allows setting up cross-validation experiments to estimate the performance of the model, as well as evaluations on independent data. Many features of the training sequences can be encoded as input, and the network architecture is highly customizable. The results returned by the server include a graphical representation of the motif identified by the method, performance values and a downloadable model that can be applied to scan protein sequences for occurrence of the motif. While its performance for the characterization of peptide–MHC interactions is widely documented, we extended NNAlign to be applicable to other receptor–ligand systems as well. Version 2.0 supports alignments with insertions and deletions, encoding of receptor pseudo-sequences, and custom alphabets for the training sequences. The server is available at http://www.cbs.dtu.dk/services/NNAlign-2.0.
publishDate 2017
dc.date.none.fl_str_mv 2017-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/48716
Nielsen, Morten; Andreatta, Massimo; NNAlign: a platform to construct and evaluate artificial neural network models of receptor–ligand interactions; Oxford University Press; Nucleic Acids Research; 45; 1; 4-2017; 344-349
0305-1048
1362-4962
CONICET Digital
CONICET
url http://hdl.handle.net/11336/48716
identifier_str_mv Nielsen, Morten; Andreatta, Massimo; NNAlign: a platform to construct and evaluate artificial neural network models of receptor–ligand interactions; Oxford University Press; Nucleic Acids Research; 45; 1; 4-2017; 344-349
0305-1048
1362-4962
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/nar/article/45/W1/W344/3605642
info:eu-repo/semantics/altIdentifier/doi/10.1093/nar/gkx276
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Oxford University Press
publisher.none.fl_str_mv Oxford University Press
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842270143032328192
score 13.13397