NNAlign: a platform to construct and evaluate artificial neural network models of receptor–ligand interactions
- Autores
- Nielsen, Morten; Andreatta, Massimo
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Peptides are extensively used to characterize functional or (linear) structural aspects of receptor–ligand interactions in biological systems, e.g. SH2, SH3, PDZ peptide-recognition domains, the MHC membrane receptors and enzymes such as kinases and phosphatases. NNAlign is a method for the identification of such linear motifs in biological sequences. The algorithm aligns the amino acid or nucleotide sequences provided as training set, and generates a model of the sequence motif detected in the data. The webserver allows setting up cross-validation experiments to estimate the performance of the model, as well as evaluations on independent data. Many features of the training sequences can be encoded as input, and the network architecture is highly customizable. The results returned by the server include a graphical representation of the motif identified by the method, performance values and a downloadable model that can be applied to scan protein sequences for occurrence of the motif. While its performance for the characterization of peptide–MHC interactions is widely documented, we extended NNAlign to be applicable to other receptor–ligand systems as well. Version 2.0 supports alignments with insertions and deletions, encoding of receptor pseudo-sequences, and custom alphabets for the training sequences. The server is available at http://www.cbs.dtu.dk/services/NNAlign-2.0.
Fil: Nielsen, Morten. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas ; Argentina. Technical University of Denmark; Dinamarca
Fil: Andreatta, Massimo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas ; Argentina - Materia
-
RECEPTOR-LIGAND INTERACTION
ARTIFICIAL NEURAL NETWORK
SEQUENCE ALIGNMENT
MACHINE LEARNING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/48716
Ver los metadatos del registro completo
id |
CONICETDig_05d01a223f4e095e3b499c8cca196642 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/48716 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
NNAlign: a platform to construct and evaluate artificial neural network models of receptor–ligand interactionsNielsen, MortenAndreatta, MassimoRECEPTOR-LIGAND INTERACTIONARTIFICIAL NEURAL NETWORKSEQUENCE ALIGNMENTMACHINE LEARNINGhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Peptides are extensively used to characterize functional or (linear) structural aspects of receptor–ligand interactions in biological systems, e.g. SH2, SH3, PDZ peptide-recognition domains, the MHC membrane receptors and enzymes such as kinases and phosphatases. NNAlign is a method for the identification of such linear motifs in biological sequences. The algorithm aligns the amino acid or nucleotide sequences provided as training set, and generates a model of the sequence motif detected in the data. The webserver allows setting up cross-validation experiments to estimate the performance of the model, as well as evaluations on independent data. Many features of the training sequences can be encoded as input, and the network architecture is highly customizable. The results returned by the server include a graphical representation of the motif identified by the method, performance values and a downloadable model that can be applied to scan protein sequences for occurrence of the motif. While its performance for the characterization of peptide–MHC interactions is widely documented, we extended NNAlign to be applicable to other receptor–ligand systems as well. Version 2.0 supports alignments with insertions and deletions, encoding of receptor pseudo-sequences, and custom alphabets for the training sequences. The server is available at http://www.cbs.dtu.dk/services/NNAlign-2.0.Fil: Nielsen, Morten. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas ; Argentina. Technical University of Denmark; DinamarcaFil: Andreatta, Massimo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas ; ArgentinaOxford University Press2017-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/48716Nielsen, Morten; Andreatta, Massimo; NNAlign: a platform to construct and evaluate artificial neural network models of receptor–ligand interactions; Oxford University Press; Nucleic Acids Research; 45; 1; 4-2017; 344-3490305-10481362-4962CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/nar/article/45/W1/W344/3605642info:eu-repo/semantics/altIdentifier/doi/10.1093/nar/gkx276info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:11:03Zoai:ri.conicet.gov.ar:11336/48716instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:11:03.492CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
NNAlign: a platform to construct and evaluate artificial neural network models of receptor–ligand interactions |
title |
NNAlign: a platform to construct and evaluate artificial neural network models of receptor–ligand interactions |
spellingShingle |
NNAlign: a platform to construct and evaluate artificial neural network models of receptor–ligand interactions Nielsen, Morten RECEPTOR-LIGAND INTERACTION ARTIFICIAL NEURAL NETWORK SEQUENCE ALIGNMENT MACHINE LEARNING |
title_short |
NNAlign: a platform to construct and evaluate artificial neural network models of receptor–ligand interactions |
title_full |
NNAlign: a platform to construct and evaluate artificial neural network models of receptor–ligand interactions |
title_fullStr |
NNAlign: a platform to construct and evaluate artificial neural network models of receptor–ligand interactions |
title_full_unstemmed |
NNAlign: a platform to construct and evaluate artificial neural network models of receptor–ligand interactions |
title_sort |
NNAlign: a platform to construct and evaluate artificial neural network models of receptor–ligand interactions |
dc.creator.none.fl_str_mv |
Nielsen, Morten Andreatta, Massimo |
author |
Nielsen, Morten |
author_facet |
Nielsen, Morten Andreatta, Massimo |
author_role |
author |
author2 |
Andreatta, Massimo |
author2_role |
author |
dc.subject.none.fl_str_mv |
RECEPTOR-LIGAND INTERACTION ARTIFICIAL NEURAL NETWORK SEQUENCE ALIGNMENT MACHINE LEARNING |
topic |
RECEPTOR-LIGAND INTERACTION ARTIFICIAL NEURAL NETWORK SEQUENCE ALIGNMENT MACHINE LEARNING |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Peptides are extensively used to characterize functional or (linear) structural aspects of receptor–ligand interactions in biological systems, e.g. SH2, SH3, PDZ peptide-recognition domains, the MHC membrane receptors and enzymes such as kinases and phosphatases. NNAlign is a method for the identification of such linear motifs in biological sequences. The algorithm aligns the amino acid or nucleotide sequences provided as training set, and generates a model of the sequence motif detected in the data. The webserver allows setting up cross-validation experiments to estimate the performance of the model, as well as evaluations on independent data. Many features of the training sequences can be encoded as input, and the network architecture is highly customizable. The results returned by the server include a graphical representation of the motif identified by the method, performance values and a downloadable model that can be applied to scan protein sequences for occurrence of the motif. While its performance for the characterization of peptide–MHC interactions is widely documented, we extended NNAlign to be applicable to other receptor–ligand systems as well. Version 2.0 supports alignments with insertions and deletions, encoding of receptor pseudo-sequences, and custom alphabets for the training sequences. The server is available at http://www.cbs.dtu.dk/services/NNAlign-2.0. Fil: Nielsen, Morten. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas ; Argentina. Technical University of Denmark; Dinamarca Fil: Andreatta, Massimo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas ; Argentina |
description |
Peptides are extensively used to characterize functional or (linear) structural aspects of receptor–ligand interactions in biological systems, e.g. SH2, SH3, PDZ peptide-recognition domains, the MHC membrane receptors and enzymes such as kinases and phosphatases. NNAlign is a method for the identification of such linear motifs in biological sequences. The algorithm aligns the amino acid or nucleotide sequences provided as training set, and generates a model of the sequence motif detected in the data. The webserver allows setting up cross-validation experiments to estimate the performance of the model, as well as evaluations on independent data. Many features of the training sequences can be encoded as input, and the network architecture is highly customizable. The results returned by the server include a graphical representation of the motif identified by the method, performance values and a downloadable model that can be applied to scan protein sequences for occurrence of the motif. While its performance for the characterization of peptide–MHC interactions is widely documented, we extended NNAlign to be applicable to other receptor–ligand systems as well. Version 2.0 supports alignments with insertions and deletions, encoding of receptor pseudo-sequences, and custom alphabets for the training sequences. The server is available at http://www.cbs.dtu.dk/services/NNAlign-2.0. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/48716 Nielsen, Morten; Andreatta, Massimo; NNAlign: a platform to construct and evaluate artificial neural network models of receptor–ligand interactions; Oxford University Press; Nucleic Acids Research; 45; 1; 4-2017; 344-349 0305-1048 1362-4962 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/48716 |
identifier_str_mv |
Nielsen, Morten; Andreatta, Massimo; NNAlign: a platform to construct and evaluate artificial neural network models of receptor–ligand interactions; Oxford University Press; Nucleic Acids Research; 45; 1; 4-2017; 344-349 0305-1048 1362-4962 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/nar/article/45/W1/W344/3605642 info:eu-repo/semantics/altIdentifier/doi/10.1093/nar/gkx276 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Oxford University Press |
publisher.none.fl_str_mv |
Oxford University Press |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842270143032328192 |
score |
13.13397 |