Obtención de compuesto de titanio con gradiente de porosidad mediante técnica pulvimetalúrgica
- Autores
- Grinschpun, Luciano; Oldani, Carlos Rodolfo; Schneiter, Ernesto Matías; Valdemarin, Matías; Pereyra, Juan
- Año de publicación
- 2018
- Idioma
- español castellano
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Within the study of biomaterials for implantological use titanium is among the most widely employed metals due to its excellent corrosion and mechanical resistance. In spite of the advances made, there are some issues remaining with the value of the elastic moduli of the titanium (110GPa) in comparison with the elastic moduli of the cortical bone (20-30 GPa) and the trabecular bone (1-5GPa). This difference is one of the main reasons a bone prosthesis fails once implanted, producing what is known as Stress shielding. One of the techniques employed to diminish the elastic moduli of titanium consists in incorporating pores to the material. This is done through powder metallurgy techniques, allowing the fabrications of porous composites, sintering a mix of powders of metallic hydrides and spacers that are eliminated during the heat treatment. Taking into account the structural characteristics of the bone, it makes sense to think on the possibility of fabricating a prosthesis with pore gradients. Another problem encountered when employing titanium, is its inability to promote the osteointegration. There are different techniques to tackle this problem, and one of them is to incorporate hydroxyapatite which has the problem that it decomposes in the presence of titanium when sintered at high temperatures. The current study shows the results obtained during the fabrication of samples of titanium with pore gradients. We studied different fabrication techniques, analyzing each stage during the powder metallurgy. process. The obtained material was characterized mechanically through compression tests, determining the elastic moduli of the composite, which was found to be between 16.4 and 20 GPa. Also, different physical characterization methods where employed to analyse the pore content which was found to be 18%. The obtained data was employed for the estimation of elastic moduli of the compound, and compared to the empirical results obtained with the mechanical tests.
Fil: Grinschpun, Luciano. Universidad Nacional de Córdoba. Facultad de Cs.exactas Físicas y Naturales. Departamento de Materiales y Tecnología; Argentina
Fil: Oldani, Carlos Rodolfo. Universidad Nacional de Córdoba. Facultad de Cs.exactas Físicas y Naturales. Departamento de Materiales y Tecnología; Argentina
Fil: Schneiter, Ernesto Matías. Universidad Nacional de Córdoba. Facultad de Cs.exactas Físicas y Naturales. Departamento de Materiales y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina
Fil: Valdemarin, Matías. Universidad Nacional de Córdoba. Facultad de Cs.exactas Físicas y Naturales. Departamento de Materiales y Tecnología; Argentina
Fil: Pereyra, Juan. Universidad Nacional de Córdoba. Facultad de Cs.exactas Físicas y Naturales. Departamento de Materiales y Tecnología; Argentina - Materia
-
BIOMATERIAL
POROUS
RADIAL
TITANIUM - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/87191
Ver los metadatos del registro completo
id |
CONICETDig_2f90327e24c02edf7649114e20b79f59 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/87191 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Obtención de compuesto de titanio con gradiente de porosidad mediante técnica pulvimetalúrgicaGrinschpun, LucianoOldani, Carlos RodolfoSchneiter, Ernesto MatíasValdemarin, MatíasPereyra, JuanBIOMATERIALPOROUSRADIALTITANIUMhttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2Within the study of biomaterials for implantological use titanium is among the most widely employed metals due to its excellent corrosion and mechanical resistance. In spite of the advances made, there are some issues remaining with the value of the elastic moduli of the titanium (110GPa) in comparison with the elastic moduli of the cortical bone (20-30 GPa) and the trabecular bone (1-5GPa). This difference is one of the main reasons a bone prosthesis fails once implanted, producing what is known as Stress shielding. One of the techniques employed to diminish the elastic moduli of titanium consists in incorporating pores to the material. This is done through powder metallurgy techniques, allowing the fabrications of porous composites, sintering a mix of powders of metallic hydrides and spacers that are eliminated during the heat treatment. Taking into account the structural characteristics of the bone, it makes sense to think on the possibility of fabricating a prosthesis with pore gradients. Another problem encountered when employing titanium, is its inability to promote the osteointegration. There are different techniques to tackle this problem, and one of them is to incorporate hydroxyapatite which has the problem that it decomposes in the presence of titanium when sintered at high temperatures. The current study shows the results obtained during the fabrication of samples of titanium with pore gradients. We studied different fabrication techniques, analyzing each stage during the powder metallurgy. process. The obtained material was characterized mechanically through compression tests, determining the elastic moduli of the composite, which was found to be between 16.4 and 20 GPa. Also, different physical characterization methods where employed to analyse the pore content which was found to be 18%. The obtained data was employed for the estimation of elastic moduli of the compound, and compared to the empirical results obtained with the mechanical tests.Fil: Grinschpun, Luciano. Universidad Nacional de Córdoba. Facultad de Cs.exactas Físicas y Naturales. Departamento de Materiales y Tecnología; ArgentinaFil: Oldani, Carlos Rodolfo. Universidad Nacional de Córdoba. Facultad de Cs.exactas Físicas y Naturales. Departamento de Materiales y Tecnología; ArgentinaFil: Schneiter, Ernesto Matías. Universidad Nacional de Córdoba. Facultad de Cs.exactas Físicas y Naturales. Departamento de Materiales y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; ArgentinaFil: Valdemarin, Matías. Universidad Nacional de Córdoba. Facultad de Cs.exactas Físicas y Naturales. Departamento de Materiales y Tecnología; ArgentinaFil: Pereyra, Juan. Universidad Nacional de Córdoba. Facultad de Cs.exactas Físicas y Naturales. Departamento de Materiales y Tecnología; ArgentinaUniversidade Federal do Rio de Janeiro2018-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/87191Grinschpun, Luciano; Oldani, Carlos Rodolfo; Schneiter, Ernesto Matías; Valdemarin, Matías; Pereyra, Juan; Obtención de compuesto de titanio con gradiente de porosidad mediante técnica pulvimetalúrgica; Universidade Federal do Rio de Janeiro; Matéria; 23; 2; 7-20181517-7076CONICET DigitalCONICETspainfo:eu-repo/semantics/altIdentifier/url/http://www.scielo.br/scielo.php?script=sci_abstract&pid=S1517-70762018000200495&lng=en&nrm=iso&tlng=eninfo:eu-repo/semantics/altIdentifier/doi/10.1590/s1517-707620180002.0421info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:35:18Zoai:ri.conicet.gov.ar:11336/87191instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:35:19.049CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Obtención de compuesto de titanio con gradiente de porosidad mediante técnica pulvimetalúrgica |
title |
Obtención de compuesto de titanio con gradiente de porosidad mediante técnica pulvimetalúrgica |
spellingShingle |
Obtención de compuesto de titanio con gradiente de porosidad mediante técnica pulvimetalúrgica Grinschpun, Luciano BIOMATERIAL POROUS RADIAL TITANIUM |
title_short |
Obtención de compuesto de titanio con gradiente de porosidad mediante técnica pulvimetalúrgica |
title_full |
Obtención de compuesto de titanio con gradiente de porosidad mediante técnica pulvimetalúrgica |
title_fullStr |
Obtención de compuesto de titanio con gradiente de porosidad mediante técnica pulvimetalúrgica |
title_full_unstemmed |
Obtención de compuesto de titanio con gradiente de porosidad mediante técnica pulvimetalúrgica |
title_sort |
Obtención de compuesto de titanio con gradiente de porosidad mediante técnica pulvimetalúrgica |
dc.creator.none.fl_str_mv |
Grinschpun, Luciano Oldani, Carlos Rodolfo Schneiter, Ernesto Matías Valdemarin, Matías Pereyra, Juan |
author |
Grinschpun, Luciano |
author_facet |
Grinschpun, Luciano Oldani, Carlos Rodolfo Schneiter, Ernesto Matías Valdemarin, Matías Pereyra, Juan |
author_role |
author |
author2 |
Oldani, Carlos Rodolfo Schneiter, Ernesto Matías Valdemarin, Matías Pereyra, Juan |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
BIOMATERIAL POROUS RADIAL TITANIUM |
topic |
BIOMATERIAL POROUS RADIAL TITANIUM |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.5 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Within the study of biomaterials for implantological use titanium is among the most widely employed metals due to its excellent corrosion and mechanical resistance. In spite of the advances made, there are some issues remaining with the value of the elastic moduli of the titanium (110GPa) in comparison with the elastic moduli of the cortical bone (20-30 GPa) and the trabecular bone (1-5GPa). This difference is one of the main reasons a bone prosthesis fails once implanted, producing what is known as Stress shielding. One of the techniques employed to diminish the elastic moduli of titanium consists in incorporating pores to the material. This is done through powder metallurgy techniques, allowing the fabrications of porous composites, sintering a mix of powders of metallic hydrides and spacers that are eliminated during the heat treatment. Taking into account the structural characteristics of the bone, it makes sense to think on the possibility of fabricating a prosthesis with pore gradients. Another problem encountered when employing titanium, is its inability to promote the osteointegration. There are different techniques to tackle this problem, and one of them is to incorporate hydroxyapatite which has the problem that it decomposes in the presence of titanium when sintered at high temperatures. The current study shows the results obtained during the fabrication of samples of titanium with pore gradients. We studied different fabrication techniques, analyzing each stage during the powder metallurgy. process. The obtained material was characterized mechanically through compression tests, determining the elastic moduli of the composite, which was found to be between 16.4 and 20 GPa. Also, different physical characterization methods where employed to analyse the pore content which was found to be 18%. The obtained data was employed for the estimation of elastic moduli of the compound, and compared to the empirical results obtained with the mechanical tests. Fil: Grinschpun, Luciano. Universidad Nacional de Córdoba. Facultad de Cs.exactas Físicas y Naturales. Departamento de Materiales y Tecnología; Argentina Fil: Oldani, Carlos Rodolfo. Universidad Nacional de Córdoba. Facultad de Cs.exactas Físicas y Naturales. Departamento de Materiales y Tecnología; Argentina Fil: Schneiter, Ernesto Matías. Universidad Nacional de Córdoba. Facultad de Cs.exactas Físicas y Naturales. Departamento de Materiales y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina Fil: Valdemarin, Matías. Universidad Nacional de Córdoba. Facultad de Cs.exactas Físicas y Naturales. Departamento de Materiales y Tecnología; Argentina Fil: Pereyra, Juan. Universidad Nacional de Córdoba. Facultad de Cs.exactas Físicas y Naturales. Departamento de Materiales y Tecnología; Argentina |
description |
Within the study of biomaterials for implantological use titanium is among the most widely employed metals due to its excellent corrosion and mechanical resistance. In spite of the advances made, there are some issues remaining with the value of the elastic moduli of the titanium (110GPa) in comparison with the elastic moduli of the cortical bone (20-30 GPa) and the trabecular bone (1-5GPa). This difference is one of the main reasons a bone prosthesis fails once implanted, producing what is known as Stress shielding. One of the techniques employed to diminish the elastic moduli of titanium consists in incorporating pores to the material. This is done through powder metallurgy techniques, allowing the fabrications of porous composites, sintering a mix of powders of metallic hydrides and spacers that are eliminated during the heat treatment. Taking into account the structural characteristics of the bone, it makes sense to think on the possibility of fabricating a prosthesis with pore gradients. Another problem encountered when employing titanium, is its inability to promote the osteointegration. There are different techniques to tackle this problem, and one of them is to incorporate hydroxyapatite which has the problem that it decomposes in the presence of titanium when sintered at high temperatures. The current study shows the results obtained during the fabrication of samples of titanium with pore gradients. We studied different fabrication techniques, analyzing each stage during the powder metallurgy. process. The obtained material was characterized mechanically through compression tests, determining the elastic moduli of the composite, which was found to be between 16.4 and 20 GPa. Also, different physical characterization methods where employed to analyse the pore content which was found to be 18%. The obtained data was employed for the estimation of elastic moduli of the compound, and compared to the empirical results obtained with the mechanical tests. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/87191 Grinschpun, Luciano; Oldani, Carlos Rodolfo; Schneiter, Ernesto Matías; Valdemarin, Matías; Pereyra, Juan; Obtención de compuesto de titanio con gradiente de porosidad mediante técnica pulvimetalúrgica; Universidade Federal do Rio de Janeiro; Matéria; 23; 2; 7-2018 1517-7076 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/87191 |
identifier_str_mv |
Grinschpun, Luciano; Oldani, Carlos Rodolfo; Schneiter, Ernesto Matías; Valdemarin, Matías; Pereyra, Juan; Obtención de compuesto de titanio con gradiente de porosidad mediante técnica pulvimetalúrgica; Universidade Federal do Rio de Janeiro; Matéria; 23; 2; 7-2018 1517-7076 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.scielo.br/scielo.php?script=sci_abstract&pid=S1517-70762018000200495&lng=en&nrm=iso&tlng=en info:eu-repo/semantics/altIdentifier/doi/10.1590/s1517-707620180002.0421 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal do Rio de Janeiro |
publisher.none.fl_str_mv |
Universidade Federal do Rio de Janeiro |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613099043160064 |
score |
13.070432 |