Entanglement entropy of a Maxwell field on the sphere

Autores
Casini, Horacio German; Huerta, Marina
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We compute the logarithmic coefficient of the entanglement entropy on asphere for a Maxwell field in d=4 dimensions. In spherical coordinates theproblem decomposes into one dimensional ones along the radial coordinate foreach angular momentum. We show the entanglement entropy of a Maxwell field isequivalent to the one of two identical massless scalars from which the mode ofl=0 has been removed. This shows the relation c^M_{log}=2(c^S_{log}-c^{S_{l=0}}_{log}) between the logarithmic coefficient in theentropy for a Maxwell field c^M_{log}, the one for a d=4 massless scalarc_{log}^S, and the logarithmic coefficient c^{S_{l=0}}_{log} for a d=2scalar with Dirichlet boundary condition at the origin. Using the acceptedvalues for these coefficients c_{log}^S=-1/90 and c^{S_{l=0}}_{log}=1/6we get c^M_{log}=-16/45, which coincides with Dowker´s calculation, but doesnot match the coefficient -rac{31}{45} in the trace anomaly for a Maxwellfield. We have numerically evaluated these three numbers c^M_{log},c^S_{log} and c^{S_{l=0}}_{log}, verifying the relation, as well aschecked they coincide with the corresponding logarithmic term in mutualinformation of two concentric spheres.
Fil: Casini, Horacio German. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina
Fil: Huerta, Marina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
Materia
ENTROPY
MAXWELL
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/180622

id CONICETDig_2efd9eaa4bd47e7b07082ee5d4e2147f
oai_identifier_str oai:ri.conicet.gov.ar:11336/180622
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Entanglement entropy of a Maxwell field on the sphereCasini, Horacio GermanHuerta, MarinaENTROPYMAXWELLhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We compute the logarithmic coefficient of the entanglement entropy on asphere for a Maxwell field in <span class="MathJax_Preview">d=4</span> dimensions. In spherical coordinates theproblem decomposes into one dimensional ones along the radial coordinate foreach angular momentum. We show the entanglement entropy of a Maxwell field isequivalent to the one of two identical massless scalars from which the mode of<span class="MathJax_Preview">l=0</span> has been removed. This shows the relation <span class="MathJax_Preview">c^M_{log}=2(c^S_{log}-c^{S_{l=0}}_{log})</span> between the logarithmic coefficient in theentropy for a Maxwell field <span class="MathJax_Preview">c^M_{log}</span>, the one for a <span class="MathJax_Preview">d=4</span> massless scalar<span class="MathJax_Preview">c_{log}^S</span>, and the logarithmic coefficient <span class="MathJax_Preview">c^{S_{l=0}}_{log}</span> for a <span class="MathJax_Preview">d=2</span>scalar with Dirichlet boundary condition at the origin. Using the acceptedvalues for these coefficients <span class="MathJax_Preview">c_{log}^S=-1/90</span> and <span class="MathJax_Preview">c^{S_{l=0}}_{log}=1/6</span>we get <span class="MathJax_Preview">c^M_{log}=-16/45</span>, which coincides with Dowker´s calculation, but doesnot match the coefficient <span class="MathJax_Preview">-rac{31}{45}</span> in the trace anomaly for a Maxwellfield. We have numerically evaluated these three numbers <span class="MathJax_Preview">c^M_{log}</span>,<span class="MathJax_Preview">c^S_{log}</span> and <span class="MathJax_Preview">c^{S_{l=0}}_{log}</span>, verifying the relation, as well aschecked they coincide with the corresponding logarithmic term in mutualinformation of two concentric spheres.Fil: Casini, Horacio German. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); ArgentinaFil: Huerta, Marina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaAmerican Physical Society2016-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/180622Casini, Horacio German; Huerta, Marina; Entanglement entropy of a Maxwell field on the sphere; American Physical Society; Physical Review D: Particles, Fields, Gravitation and Cosmology; 93; 10; 1-2016; 1-181550-7998CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1512.06182info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.93.105031info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prd/abstract/10.1103/PhysRevD.93.105031info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:26:51Zoai:ri.conicet.gov.ar:11336/180622instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:26:51.376CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Entanglement entropy of a Maxwell field on the sphere
title Entanglement entropy of a Maxwell field on the sphere
spellingShingle Entanglement entropy of a Maxwell field on the sphere
Casini, Horacio German
ENTROPY
MAXWELL
title_short Entanglement entropy of a Maxwell field on the sphere
title_full Entanglement entropy of a Maxwell field on the sphere
title_fullStr Entanglement entropy of a Maxwell field on the sphere
title_full_unstemmed Entanglement entropy of a Maxwell field on the sphere
title_sort Entanglement entropy of a Maxwell field on the sphere
dc.creator.none.fl_str_mv Casini, Horacio German
Huerta, Marina
author Casini, Horacio German
author_facet Casini, Horacio German
Huerta, Marina
author_role author
author2 Huerta, Marina
author2_role author
dc.subject.none.fl_str_mv ENTROPY
MAXWELL
topic ENTROPY
MAXWELL
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We compute the logarithmic coefficient of the entanglement entropy on asphere for a Maxwell field in <span class="MathJax_Preview">d=4</span> dimensions. In spherical coordinates theproblem decomposes into one dimensional ones along the radial coordinate foreach angular momentum. We show the entanglement entropy of a Maxwell field isequivalent to the one of two identical massless scalars from which the mode of<span class="MathJax_Preview">l=0</span> has been removed. This shows the relation <span class="MathJax_Preview">c^M_{log}=2(c^S_{log}-c^{S_{l=0}}_{log})</span> between the logarithmic coefficient in theentropy for a Maxwell field <span class="MathJax_Preview">c^M_{log}</span>, the one for a <span class="MathJax_Preview">d=4</span> massless scalar<span class="MathJax_Preview">c_{log}^S</span>, and the logarithmic coefficient <span class="MathJax_Preview">c^{S_{l=0}}_{log}</span> for a <span class="MathJax_Preview">d=2</span>scalar with Dirichlet boundary condition at the origin. Using the acceptedvalues for these coefficients <span class="MathJax_Preview">c_{log}^S=-1/90</span> and <span class="MathJax_Preview">c^{S_{l=0}}_{log}=1/6</span>we get <span class="MathJax_Preview">c^M_{log}=-16/45</span>, which coincides with Dowker´s calculation, but doesnot match the coefficient <span class="MathJax_Preview">-rac{31}{45}</span> in the trace anomaly for a Maxwellfield. We have numerically evaluated these three numbers <span class="MathJax_Preview">c^M_{log}</span>,<span class="MathJax_Preview">c^S_{log}</span> and <span class="MathJax_Preview">c^{S_{l=0}}_{log}</span>, verifying the relation, as well aschecked they coincide with the corresponding logarithmic term in mutualinformation of two concentric spheres.
Fil: Casini, Horacio German. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina
Fil: Huerta, Marina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
description We compute the logarithmic coefficient of the entanglement entropy on asphere for a Maxwell field in <span class="MathJax_Preview">d=4</span> dimensions. In spherical coordinates theproblem decomposes into one dimensional ones along the radial coordinate foreach angular momentum. We show the entanglement entropy of a Maxwell field isequivalent to the one of two identical massless scalars from which the mode of<span class="MathJax_Preview">l=0</span> has been removed. This shows the relation <span class="MathJax_Preview">c^M_{log}=2(c^S_{log}-c^{S_{l=0}}_{log})</span> between the logarithmic coefficient in theentropy for a Maxwell field <span class="MathJax_Preview">c^M_{log}</span>, the one for a <span class="MathJax_Preview">d=4</span> massless scalar<span class="MathJax_Preview">c_{log}^S</span>, and the logarithmic coefficient <span class="MathJax_Preview">c^{S_{l=0}}_{log}</span> for a <span class="MathJax_Preview">d=2</span>scalar with Dirichlet boundary condition at the origin. Using the acceptedvalues for these coefficients <span class="MathJax_Preview">c_{log}^S=-1/90</span> and <span class="MathJax_Preview">c^{S_{l=0}}_{log}=1/6</span>we get <span class="MathJax_Preview">c^M_{log}=-16/45</span>, which coincides with Dowker´s calculation, but doesnot match the coefficient <span class="MathJax_Preview">-rac{31}{45}</span> in the trace anomaly for a Maxwellfield. We have numerically evaluated these three numbers <span class="MathJax_Preview">c^M_{log}</span>,<span class="MathJax_Preview">c^S_{log}</span> and <span class="MathJax_Preview">c^{S_{l=0}}_{log}</span>, verifying the relation, as well aschecked they coincide with the corresponding logarithmic term in mutualinformation of two concentric spheres.
publishDate 2016
dc.date.none.fl_str_mv 2016-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/180622
Casini, Horacio German; Huerta, Marina; Entanglement entropy of a Maxwell field on the sphere; American Physical Society; Physical Review D: Particles, Fields, Gravitation and Cosmology; 93; 10; 1-2016; 1-18
1550-7998
CONICET Digital
CONICET
url http://hdl.handle.net/11336/180622
identifier_str_mv Casini, Horacio German; Huerta, Marina; Entanglement entropy of a Maxwell field on the sphere; American Physical Society; Physical Review D: Particles, Fields, Gravitation and Cosmology; 93; 10; 1-2016; 1-18
1550-7998
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1512.06182
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.93.105031
info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prd/abstract/10.1103/PhysRevD.93.105031
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846781831166296064
score 12.982451