Entanglement entropy of a Maxwell field on the sphere
- Autores
- Casini, Horacio German; Huerta, Marina
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We compute the logarithmic coefficient of the entanglement entropy on asphere for a Maxwell field in d=4 dimensions. In spherical coordinates theproblem decomposes into one dimensional ones along the radial coordinate foreach angular momentum. We show the entanglement entropy of a Maxwell field isequivalent to the one of two identical massless scalars from which the mode ofl=0 has been removed. This shows the relation c^M_{log}=2(c^S_{log}-c^{S_{l=0}}_{log}) between the logarithmic coefficient in theentropy for a Maxwell field c^M_{log}, the one for a d=4 massless scalarc_{log}^S, and the logarithmic coefficient c^{S_{l=0}}_{log} for a d=2scalar with Dirichlet boundary condition at the origin. Using the acceptedvalues for these coefficients c_{log}^S=-1/90 and c^{S_{l=0}}_{log}=1/6we get c^M_{log}=-16/45, which coincides with Dowker´s calculation, but doesnot match the coefficient -rac{31}{45} in the trace anomaly for a Maxwellfield. We have numerically evaluated these three numbers c^M_{log},c^S_{log} and c^{S_{l=0}}_{log}, verifying the relation, as well aschecked they coincide with the corresponding logarithmic term in mutualinformation of two concentric spheres.
Fil: Casini, Horacio German. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina
Fil: Huerta, Marina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina - Materia
-
ENTROPY
MAXWELL - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/180622
Ver los metadatos del registro completo
| id |
CONICETDig_2efd9eaa4bd47e7b07082ee5d4e2147f |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/180622 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Entanglement entropy of a Maxwell field on the sphereCasini, Horacio GermanHuerta, MarinaENTROPYMAXWELLhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We compute the logarithmic coefficient of the entanglement entropy on asphere for a Maxwell field in <span class="MathJax_Preview">d=4</span> dimensions. In spherical coordinates theproblem decomposes into one dimensional ones along the radial coordinate foreach angular momentum. We show the entanglement entropy of a Maxwell field isequivalent to the one of two identical massless scalars from which the mode of<span class="MathJax_Preview">l=0</span> has been removed. This shows the relation <span class="MathJax_Preview">c^M_{log}=2(c^S_{log}-c^{S_{l=0}}_{log})</span> between the logarithmic coefficient in theentropy for a Maxwell field <span class="MathJax_Preview">c^M_{log}</span>, the one for a <span class="MathJax_Preview">d=4</span> massless scalar<span class="MathJax_Preview">c_{log}^S</span>, and the logarithmic coefficient <span class="MathJax_Preview">c^{S_{l=0}}_{log}</span> for a <span class="MathJax_Preview">d=2</span>scalar with Dirichlet boundary condition at the origin. Using the acceptedvalues for these coefficients <span class="MathJax_Preview">c_{log}^S=-1/90</span> and <span class="MathJax_Preview">c^{S_{l=0}}_{log}=1/6</span>we get <span class="MathJax_Preview">c^M_{log}=-16/45</span>, which coincides with Dowker´s calculation, but doesnot match the coefficient <span class="MathJax_Preview">-rac{31}{45}</span> in the trace anomaly for a Maxwellfield. We have numerically evaluated these three numbers <span class="MathJax_Preview">c^M_{log}</span>,<span class="MathJax_Preview">c^S_{log}</span> and <span class="MathJax_Preview">c^{S_{l=0}}_{log}</span>, verifying the relation, as well aschecked they coincide with the corresponding logarithmic term in mutualinformation of two concentric spheres.Fil: Casini, Horacio German. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); ArgentinaFil: Huerta, Marina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaAmerican Physical Society2016-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/180622Casini, Horacio German; Huerta, Marina; Entanglement entropy of a Maxwell field on the sphere; American Physical Society; Physical Review D: Particles, Fields, Gravitation and Cosmology; 93; 10; 1-2016; 1-181550-7998CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1512.06182info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.93.105031info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prd/abstract/10.1103/PhysRevD.93.105031info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:26:51Zoai:ri.conicet.gov.ar:11336/180622instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:26:51.376CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Entanglement entropy of a Maxwell field on the sphere |
| title |
Entanglement entropy of a Maxwell field on the sphere |
| spellingShingle |
Entanglement entropy of a Maxwell field on the sphere Casini, Horacio German ENTROPY MAXWELL |
| title_short |
Entanglement entropy of a Maxwell field on the sphere |
| title_full |
Entanglement entropy of a Maxwell field on the sphere |
| title_fullStr |
Entanglement entropy of a Maxwell field on the sphere |
| title_full_unstemmed |
Entanglement entropy of a Maxwell field on the sphere |
| title_sort |
Entanglement entropy of a Maxwell field on the sphere |
| dc.creator.none.fl_str_mv |
Casini, Horacio German Huerta, Marina |
| author |
Casini, Horacio German |
| author_facet |
Casini, Horacio German Huerta, Marina |
| author_role |
author |
| author2 |
Huerta, Marina |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
ENTROPY MAXWELL |
| topic |
ENTROPY MAXWELL |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
We compute the logarithmic coefficient of the entanglement entropy on asphere for a Maxwell field in <span class="MathJax_Preview">d=4</span> dimensions. In spherical coordinates theproblem decomposes into one dimensional ones along the radial coordinate foreach angular momentum. We show the entanglement entropy of a Maxwell field isequivalent to the one of two identical massless scalars from which the mode of<span class="MathJax_Preview">l=0</span> has been removed. This shows the relation <span class="MathJax_Preview">c^M_{log}=2(c^S_{log}-c^{S_{l=0}}_{log})</span> between the logarithmic coefficient in theentropy for a Maxwell field <span class="MathJax_Preview">c^M_{log}</span>, the one for a <span class="MathJax_Preview">d=4</span> massless scalar<span class="MathJax_Preview">c_{log}^S</span>, and the logarithmic coefficient <span class="MathJax_Preview">c^{S_{l=0}}_{log}</span> for a <span class="MathJax_Preview">d=2</span>scalar with Dirichlet boundary condition at the origin. Using the acceptedvalues for these coefficients <span class="MathJax_Preview">c_{log}^S=-1/90</span> and <span class="MathJax_Preview">c^{S_{l=0}}_{log}=1/6</span>we get <span class="MathJax_Preview">c^M_{log}=-16/45</span>, which coincides with Dowker´s calculation, but doesnot match the coefficient <span class="MathJax_Preview">-rac{31}{45}</span> in the trace anomaly for a Maxwellfield. We have numerically evaluated these three numbers <span class="MathJax_Preview">c^M_{log}</span>,<span class="MathJax_Preview">c^S_{log}</span> and <span class="MathJax_Preview">c^{S_{l=0}}_{log}</span>, verifying the relation, as well aschecked they coincide with the corresponding logarithmic term in mutualinformation of two concentric spheres. Fil: Casini, Horacio German. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina Fil: Huerta, Marina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina |
| description |
We compute the logarithmic coefficient of the entanglement entropy on asphere for a Maxwell field in <span class="MathJax_Preview">d=4</span> dimensions. In spherical coordinates theproblem decomposes into one dimensional ones along the radial coordinate foreach angular momentum. We show the entanglement entropy of a Maxwell field isequivalent to the one of two identical massless scalars from which the mode of<span class="MathJax_Preview">l=0</span> has been removed. This shows the relation <span class="MathJax_Preview">c^M_{log}=2(c^S_{log}-c^{S_{l=0}}_{log})</span> between the logarithmic coefficient in theentropy for a Maxwell field <span class="MathJax_Preview">c^M_{log}</span>, the one for a <span class="MathJax_Preview">d=4</span> massless scalar<span class="MathJax_Preview">c_{log}^S</span>, and the logarithmic coefficient <span class="MathJax_Preview">c^{S_{l=0}}_{log}</span> for a <span class="MathJax_Preview">d=2</span>scalar with Dirichlet boundary condition at the origin. Using the acceptedvalues for these coefficients <span class="MathJax_Preview">c_{log}^S=-1/90</span> and <span class="MathJax_Preview">c^{S_{l=0}}_{log}=1/6</span>we get <span class="MathJax_Preview">c^M_{log}=-16/45</span>, which coincides with Dowker´s calculation, but doesnot match the coefficient <span class="MathJax_Preview">-rac{31}{45}</span> in the trace anomaly for a Maxwellfield. We have numerically evaluated these three numbers <span class="MathJax_Preview">c^M_{log}</span>,<span class="MathJax_Preview">c^S_{log}</span> and <span class="MathJax_Preview">c^{S_{l=0}}_{log}</span>, verifying the relation, as well aschecked they coincide with the corresponding logarithmic term in mutualinformation of two concentric spheres. |
| publishDate |
2016 |
| dc.date.none.fl_str_mv |
2016-01 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/180622 Casini, Horacio German; Huerta, Marina; Entanglement entropy of a Maxwell field on the sphere; American Physical Society; Physical Review D: Particles, Fields, Gravitation and Cosmology; 93; 10; 1-2016; 1-18 1550-7998 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/180622 |
| identifier_str_mv |
Casini, Horacio German; Huerta, Marina; Entanglement entropy of a Maxwell field on the sphere; American Physical Society; Physical Review D: Particles, Fields, Gravitation and Cosmology; 93; 10; 1-2016; 1-18 1550-7998 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1512.06182 info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.93.105031 info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prd/abstract/10.1103/PhysRevD.93.105031 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
American Physical Society |
| publisher.none.fl_str_mv |
American Physical Society |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846781831166296064 |
| score |
12.982451 |