Instability of universal terms in the entanglement entropy
- Autores
- Huerta, Marina; Van Der Velde, Guido Gustavo
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The role of symmetries in what concerns entanglement entropy has been extensively explored in the last years and revealed a profound connection with the quantum field theory's algebraic structure. Recently, it was found that some universal contributions to the entanglement entropy and mutual information may be nonuniquely defined in theories with generalized symmetries. Here, we study this issue in detail in the particular case of the entanglement entropy of the Maxwell theory in (2+1) dimensions for rotationally symmetric regions. In this setup, the problem can be dimensionally reduced to a half-line. We find that the only difference between the reduced problem for the Maxwell field and the reduced scalar free field stems from the Fourier angular n=0 mode. This simplification allows us to check explicitly the many issues that characterize models with broken global symmetries. Namely, we manifestly show that the additive algebras break Haag duality, and single out the nonlocal operators that are responsible for the failure of this property. More interestingly, we present concrete lattice realizations that confirm that the logarithmic "universal"term of the Maxwell entanglement entropy for disks depends on the details of the algebra assignation. This ambiguity hinders the identification of possible topological contributions characteristic of models with generalized symmetries and tarnishes its universal character. We further calculate the Maxwell mutual information for two nearly complementary concentric disks. We obtain the expected universal contribution with a log-log dependence and check that, unlike entropy, this is stable. Accordingly, this supports mutual information as the appropriate probe to sense additivity-duality breaking and the consequent universal topological contributions.
Fil: Huerta, Marina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
Fil: Van Der Velde, Guido Gustavo. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina - Materia
-
Maxwell field
Entanglement
symmetries - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/216820
Ver los metadatos del registro completo
| id |
CONICETDig_5598cbc1ac898e1aa654985580f25467 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/216820 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Instability of universal terms in the entanglement entropyHuerta, MarinaVan Der Velde, Guido GustavoMaxwell fieldEntanglementsymmetrieshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The role of symmetries in what concerns entanglement entropy has been extensively explored in the last years and revealed a profound connection with the quantum field theory's algebraic structure. Recently, it was found that some universal contributions to the entanglement entropy and mutual information may be nonuniquely defined in theories with generalized symmetries. Here, we study this issue in detail in the particular case of the entanglement entropy of the Maxwell theory in (2+1) dimensions for rotationally symmetric regions. In this setup, the problem can be dimensionally reduced to a half-line. We find that the only difference between the reduced problem for the Maxwell field and the reduced scalar free field stems from the Fourier angular n=0 mode. This simplification allows us to check explicitly the many issues that characterize models with broken global symmetries. Namely, we manifestly show that the additive algebras break Haag duality, and single out the nonlocal operators that are responsible for the failure of this property. More interestingly, we present concrete lattice realizations that confirm that the logarithmic "universal"term of the Maxwell entanglement entropy for disks depends on the details of the algebra assignation. This ambiguity hinders the identification of possible topological contributions characteristic of models with generalized symmetries and tarnishes its universal character. We further calculate the Maxwell mutual information for two nearly complementary concentric disks. We obtain the expected universal contribution with a log-log dependence and check that, unlike entropy, this is stable. Accordingly, this supports mutual information as the appropriate probe to sense additivity-duality breaking and the consequent universal topological contributions.Fil: Huerta, Marina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Van Der Velde, Guido Gustavo. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaAmerican Physical Society2022-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/216820Huerta, Marina; Van Der Velde, Guido Gustavo; Instability of universal terms in the entanglement entropy; American Physical Society; Physical Review D; 105; 12; 6-2022; 1-162470-00102470-0029CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.105.125021info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T12:06:14Zoai:ri.conicet.gov.ar:11336/216820instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 12:06:14.764CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Instability of universal terms in the entanglement entropy |
| title |
Instability of universal terms in the entanglement entropy |
| spellingShingle |
Instability of universal terms in the entanglement entropy Huerta, Marina Maxwell field Entanglement symmetries |
| title_short |
Instability of universal terms in the entanglement entropy |
| title_full |
Instability of universal terms in the entanglement entropy |
| title_fullStr |
Instability of universal terms in the entanglement entropy |
| title_full_unstemmed |
Instability of universal terms in the entanglement entropy |
| title_sort |
Instability of universal terms in the entanglement entropy |
| dc.creator.none.fl_str_mv |
Huerta, Marina Van Der Velde, Guido Gustavo |
| author |
Huerta, Marina |
| author_facet |
Huerta, Marina Van Der Velde, Guido Gustavo |
| author_role |
author |
| author2 |
Van Der Velde, Guido Gustavo |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
Maxwell field Entanglement symmetries |
| topic |
Maxwell field Entanglement symmetries |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
The role of symmetries in what concerns entanglement entropy has been extensively explored in the last years and revealed a profound connection with the quantum field theory's algebraic structure. Recently, it was found that some universal contributions to the entanglement entropy and mutual information may be nonuniquely defined in theories with generalized symmetries. Here, we study this issue in detail in the particular case of the entanglement entropy of the Maxwell theory in (2+1) dimensions for rotationally symmetric regions. In this setup, the problem can be dimensionally reduced to a half-line. We find that the only difference between the reduced problem for the Maxwell field and the reduced scalar free field stems from the Fourier angular n=0 mode. This simplification allows us to check explicitly the many issues that characterize models with broken global symmetries. Namely, we manifestly show that the additive algebras break Haag duality, and single out the nonlocal operators that are responsible for the failure of this property. More interestingly, we present concrete lattice realizations that confirm that the logarithmic "universal"term of the Maxwell entanglement entropy for disks depends on the details of the algebra assignation. This ambiguity hinders the identification of possible topological contributions characteristic of models with generalized symmetries and tarnishes its universal character. We further calculate the Maxwell mutual information for two nearly complementary concentric disks. We obtain the expected universal contribution with a log-log dependence and check that, unlike entropy, this is stable. Accordingly, this supports mutual information as the appropriate probe to sense additivity-duality breaking and the consequent universal topological contributions. Fil: Huerta, Marina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina Fil: Van Der Velde, Guido Gustavo. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina |
| description |
The role of symmetries in what concerns entanglement entropy has been extensively explored in the last years and revealed a profound connection with the quantum field theory's algebraic structure. Recently, it was found that some universal contributions to the entanglement entropy and mutual information may be nonuniquely defined in theories with generalized symmetries. Here, we study this issue in detail in the particular case of the entanglement entropy of the Maxwell theory in (2+1) dimensions for rotationally symmetric regions. In this setup, the problem can be dimensionally reduced to a half-line. We find that the only difference between the reduced problem for the Maxwell field and the reduced scalar free field stems from the Fourier angular n=0 mode. This simplification allows us to check explicitly the many issues that characterize models with broken global symmetries. Namely, we manifestly show that the additive algebras break Haag duality, and single out the nonlocal operators that are responsible for the failure of this property. More interestingly, we present concrete lattice realizations that confirm that the logarithmic "universal"term of the Maxwell entanglement entropy for disks depends on the details of the algebra assignation. This ambiguity hinders the identification of possible topological contributions characteristic of models with generalized symmetries and tarnishes its universal character. We further calculate the Maxwell mutual information for two nearly complementary concentric disks. We obtain the expected universal contribution with a log-log dependence and check that, unlike entropy, this is stable. Accordingly, this supports mutual information as the appropriate probe to sense additivity-duality breaking and the consequent universal topological contributions. |
| publishDate |
2022 |
| dc.date.none.fl_str_mv |
2022-06 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/216820 Huerta, Marina; Van Der Velde, Guido Gustavo; Instability of universal terms in the entanglement entropy; American Physical Society; Physical Review D; 105; 12; 6-2022; 1-16 2470-0010 2470-0029 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/216820 |
| identifier_str_mv |
Huerta, Marina; Van Der Velde, Guido Gustavo; Instability of universal terms in the entanglement entropy; American Physical Society; Physical Review D; 105; 12; 6-2022; 1-16 2470-0010 2470-0029 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.105.125021 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
American Physical Society |
| publisher.none.fl_str_mv |
American Physical Society |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846782418224152576 |
| score |
12.982451 |