Instability of universal terms in the entanglement entropy

Autores
Huerta, Marina; Van Der Velde, Guido Gustavo
Año de publicación
2022
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The role of symmetries in what concerns entanglement entropy has been extensively explored in the last years and revealed a profound connection with the quantum field theory's algebraic structure. Recently, it was found that some universal contributions to the entanglement entropy and mutual information may be nonuniquely defined in theories with generalized symmetries. Here, we study this issue in detail in the particular case of the entanglement entropy of the Maxwell theory in (2+1) dimensions for rotationally symmetric regions. In this setup, the problem can be dimensionally reduced to a half-line. We find that the only difference between the reduced problem for the Maxwell field and the reduced scalar free field stems from the Fourier angular n=0 mode. This simplification allows us to check explicitly the many issues that characterize models with broken global symmetries. Namely, we manifestly show that the additive algebras break Haag duality, and single out the nonlocal operators that are responsible for the failure of this property. More interestingly, we present concrete lattice realizations that confirm that the logarithmic "universal"term of the Maxwell entanglement entropy for disks depends on the details of the algebra assignation. This ambiguity hinders the identification of possible topological contributions characteristic of models with generalized symmetries and tarnishes its universal character. We further calculate the Maxwell mutual information for two nearly complementary concentric disks. We obtain the expected universal contribution with a log-log dependence and check that, unlike entropy, this is stable. Accordingly, this supports mutual information as the appropriate probe to sense additivity-duality breaking and the consequent universal topological contributions.
Fil: Huerta, Marina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
Fil: Van Der Velde, Guido Gustavo. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
Materia
Maxwell field
Entanglement
symmetries
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/216820

id CONICETDig_5598cbc1ac898e1aa654985580f25467
oai_identifier_str oai:ri.conicet.gov.ar:11336/216820
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Instability of universal terms in the entanglement entropyHuerta, MarinaVan Der Velde, Guido GustavoMaxwell fieldEntanglementsymmetrieshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The role of symmetries in what concerns entanglement entropy has been extensively explored in the last years and revealed a profound connection with the quantum field theory's algebraic structure. Recently, it was found that some universal contributions to the entanglement entropy and mutual information may be nonuniquely defined in theories with generalized symmetries. Here, we study this issue in detail in the particular case of the entanglement entropy of the Maxwell theory in (2+1) dimensions for rotationally symmetric regions. In this setup, the problem can be dimensionally reduced to a half-line. We find that the only difference between the reduced problem for the Maxwell field and the reduced scalar free field stems from the Fourier angular n=0 mode. This simplification allows us to check explicitly the many issues that characterize models with broken global symmetries. Namely, we manifestly show that the additive algebras break Haag duality, and single out the nonlocal operators that are responsible for the failure of this property. More interestingly, we present concrete lattice realizations that confirm that the logarithmic "universal"term of the Maxwell entanglement entropy for disks depends on the details of the algebra assignation. This ambiguity hinders the identification of possible topological contributions characteristic of models with generalized symmetries and tarnishes its universal character. We further calculate the Maxwell mutual information for two nearly complementary concentric disks. We obtain the expected universal contribution with a log-log dependence and check that, unlike entropy, this is stable. Accordingly, this supports mutual information as the appropriate probe to sense additivity-duality breaking and the consequent universal topological contributions.Fil: Huerta, Marina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Van Der Velde, Guido Gustavo. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaAmerican Physical Society2022-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/216820Huerta, Marina; Van Der Velde, Guido Gustavo; Instability of universal terms in the entanglement entropy; American Physical Society; Physical Review D; 105; 12; 6-2022; 1-162470-00102470-0029CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.105.125021info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T12:06:14Zoai:ri.conicet.gov.ar:11336/216820instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 12:06:14.764CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Instability of universal terms in the entanglement entropy
title Instability of universal terms in the entanglement entropy
spellingShingle Instability of universal terms in the entanglement entropy
Huerta, Marina
Maxwell field
Entanglement
symmetries
title_short Instability of universal terms in the entanglement entropy
title_full Instability of universal terms in the entanglement entropy
title_fullStr Instability of universal terms in the entanglement entropy
title_full_unstemmed Instability of universal terms in the entanglement entropy
title_sort Instability of universal terms in the entanglement entropy
dc.creator.none.fl_str_mv Huerta, Marina
Van Der Velde, Guido Gustavo
author Huerta, Marina
author_facet Huerta, Marina
Van Der Velde, Guido Gustavo
author_role author
author2 Van Der Velde, Guido Gustavo
author2_role author
dc.subject.none.fl_str_mv Maxwell field
Entanglement
symmetries
topic Maxwell field
Entanglement
symmetries
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The role of symmetries in what concerns entanglement entropy has been extensively explored in the last years and revealed a profound connection with the quantum field theory's algebraic structure. Recently, it was found that some universal contributions to the entanglement entropy and mutual information may be nonuniquely defined in theories with generalized symmetries. Here, we study this issue in detail in the particular case of the entanglement entropy of the Maxwell theory in (2+1) dimensions for rotationally symmetric regions. In this setup, the problem can be dimensionally reduced to a half-line. We find that the only difference between the reduced problem for the Maxwell field and the reduced scalar free field stems from the Fourier angular n=0 mode. This simplification allows us to check explicitly the many issues that characterize models with broken global symmetries. Namely, we manifestly show that the additive algebras break Haag duality, and single out the nonlocal operators that are responsible for the failure of this property. More interestingly, we present concrete lattice realizations that confirm that the logarithmic "universal"term of the Maxwell entanglement entropy for disks depends on the details of the algebra assignation. This ambiguity hinders the identification of possible topological contributions characteristic of models with generalized symmetries and tarnishes its universal character. We further calculate the Maxwell mutual information for two nearly complementary concentric disks. We obtain the expected universal contribution with a log-log dependence and check that, unlike entropy, this is stable. Accordingly, this supports mutual information as the appropriate probe to sense additivity-duality breaking and the consequent universal topological contributions.
Fil: Huerta, Marina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
Fil: Van Der Velde, Guido Gustavo. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
description The role of symmetries in what concerns entanglement entropy has been extensively explored in the last years and revealed a profound connection with the quantum field theory's algebraic structure. Recently, it was found that some universal contributions to the entanglement entropy and mutual information may be nonuniquely defined in theories with generalized symmetries. Here, we study this issue in detail in the particular case of the entanglement entropy of the Maxwell theory in (2+1) dimensions for rotationally symmetric regions. In this setup, the problem can be dimensionally reduced to a half-line. We find that the only difference between the reduced problem for the Maxwell field and the reduced scalar free field stems from the Fourier angular n=0 mode. This simplification allows us to check explicitly the many issues that characterize models with broken global symmetries. Namely, we manifestly show that the additive algebras break Haag duality, and single out the nonlocal operators that are responsible for the failure of this property. More interestingly, we present concrete lattice realizations that confirm that the logarithmic "universal"term of the Maxwell entanglement entropy for disks depends on the details of the algebra assignation. This ambiguity hinders the identification of possible topological contributions characteristic of models with generalized symmetries and tarnishes its universal character. We further calculate the Maxwell mutual information for two nearly complementary concentric disks. We obtain the expected universal contribution with a log-log dependence and check that, unlike entropy, this is stable. Accordingly, this supports mutual information as the appropriate probe to sense additivity-duality breaking and the consequent universal topological contributions.
publishDate 2022
dc.date.none.fl_str_mv 2022-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/216820
Huerta, Marina; Van Der Velde, Guido Gustavo; Instability of universal terms in the entanglement entropy; American Physical Society; Physical Review D; 105; 12; 6-2022; 1-16
2470-0010
2470-0029
CONICET Digital
CONICET
url http://hdl.handle.net/11336/216820
identifier_str_mv Huerta, Marina; Van Der Velde, Guido Gustavo; Instability of universal terms in the entanglement entropy; American Physical Society; Physical Review D; 105; 12; 6-2022; 1-16
2470-0010
2470-0029
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.105.125021
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846782418224152576
score 12.982451