Entanglement entropy for a Maxwell field: Numerical calculation on a two dimensional lattice
- Autores
- Casini, Horacio German; Huerta, Marina
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study entanglement entropy (EE) for a Maxwell field in (2+1) dimensions. We do numerical calculations in two-dimensional lattices. This gives a concrete example of the general results of our recent work [1] on entropy for lattice gauge fields using an algebraic approach. To evaluate the entropies we extend the standard calculation methods for the entropy of Gaussian states in canonical commutation algebras to the more general case of algebras with center and arbitrary numerical commutators. We find that while the entropy depends on the details of the algebra choice, mutual information has a well defined continuum limit as predicted in [1]. We study several universal terms for the entropy of the Maxwell field and compare with the case of a massless scalar field. We find some interesting new phenomena: an "evanescent" logarithmically divergent term in the entropy with topological coefficient which does not have any correspondence with ultraviolet entanglement in the universal quantities, and a nonstandard way in which strong subadditivity is realized. Based on the results of our calculations we propose a generalization of strong subadditivity for the entropy on some algebras that are not in tensor product.
Fil: Casini, Horacio German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Universidad Nacional de Cuyo. Secretaria de Ciencia y Técnica; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina. Institute for Advanced Study; Estados Unidos
Fil: Huerta, Marina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Universidad Nacional de Cuyo. Secretaria de Ciencia y Técnica; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina. Institute for Advanced Study; Estados Unidos - Materia
-
Entanglement
Gauge
Fields - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/180481
Ver los metadatos del registro completo
id |
CONICETDig_de66ba8be828447f84ce3d85c4c8bdcc |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/180481 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Entanglement entropy for a Maxwell field: Numerical calculation on a two dimensional latticeCasini, Horacio GermanHuerta, MarinaEntanglementGaugeFieldshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We study entanglement entropy (EE) for a Maxwell field in (2+1) dimensions. We do numerical calculations in two-dimensional lattices. This gives a concrete example of the general results of our recent work [1] on entropy for lattice gauge fields using an algebraic approach. To evaluate the entropies we extend the standard calculation methods for the entropy of Gaussian states in canonical commutation algebras to the more general case of algebras with center and arbitrary numerical commutators. We find that while the entropy depends on the details of the algebra choice, mutual information has a well defined continuum limit as predicted in [1]. We study several universal terms for the entropy of the Maxwell field and compare with the case of a massless scalar field. We find some interesting new phenomena: an "evanescent" logarithmically divergent term in the entropy with topological coefficient which does not have any correspondence with ultraviolet entanglement in the universal quantities, and a nonstandard way in which strong subadditivity is realized. Based on the results of our calculations we propose a generalization of strong subadditivity for the entropy on some algebras that are not in tensor product.Fil: Casini, Horacio German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Universidad Nacional de Cuyo. Secretaria de Ciencia y Técnica; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina. Institute for Advanced Study; Estados UnidosFil: Huerta, Marina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Universidad Nacional de Cuyo. Secretaria de Ciencia y Técnica; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina. Institute for Advanced Study; Estados UnidosAmerican Physical Society2014-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/180481Casini, Horacio German; Huerta, Marina; Entanglement entropy for a Maxwell field: Numerical calculation on a two dimensional lattice; American Physical Society; Physical Review D: Particles, Fields, Gravitation and Cosmology; 90; 10; 11-2014; 1-270556-28211550-7998CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prd/abstract/10.1103/PhysRevD.90.105013info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.90.105013info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1406.2991info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:07:22Zoai:ri.conicet.gov.ar:11336/180481instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:07:23.071CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Entanglement entropy for a Maxwell field: Numerical calculation on a two dimensional lattice |
title |
Entanglement entropy for a Maxwell field: Numerical calculation on a two dimensional lattice |
spellingShingle |
Entanglement entropy for a Maxwell field: Numerical calculation on a two dimensional lattice Casini, Horacio German Entanglement Gauge Fields |
title_short |
Entanglement entropy for a Maxwell field: Numerical calculation on a two dimensional lattice |
title_full |
Entanglement entropy for a Maxwell field: Numerical calculation on a two dimensional lattice |
title_fullStr |
Entanglement entropy for a Maxwell field: Numerical calculation on a two dimensional lattice |
title_full_unstemmed |
Entanglement entropy for a Maxwell field: Numerical calculation on a two dimensional lattice |
title_sort |
Entanglement entropy for a Maxwell field: Numerical calculation on a two dimensional lattice |
dc.creator.none.fl_str_mv |
Casini, Horacio German Huerta, Marina |
author |
Casini, Horacio German |
author_facet |
Casini, Horacio German Huerta, Marina |
author_role |
author |
author2 |
Huerta, Marina |
author2_role |
author |
dc.subject.none.fl_str_mv |
Entanglement Gauge Fields |
topic |
Entanglement Gauge Fields |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We study entanglement entropy (EE) for a Maxwell field in (2+1) dimensions. We do numerical calculations in two-dimensional lattices. This gives a concrete example of the general results of our recent work [1] on entropy for lattice gauge fields using an algebraic approach. To evaluate the entropies we extend the standard calculation methods for the entropy of Gaussian states in canonical commutation algebras to the more general case of algebras with center and arbitrary numerical commutators. We find that while the entropy depends on the details of the algebra choice, mutual information has a well defined continuum limit as predicted in [1]. We study several universal terms for the entropy of the Maxwell field and compare with the case of a massless scalar field. We find some interesting new phenomena: an "evanescent" logarithmically divergent term in the entropy with topological coefficient which does not have any correspondence with ultraviolet entanglement in the universal quantities, and a nonstandard way in which strong subadditivity is realized. Based on the results of our calculations we propose a generalization of strong subadditivity for the entropy on some algebras that are not in tensor product. Fil: Casini, Horacio German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Universidad Nacional de Cuyo. Secretaria de Ciencia y Técnica; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina. Institute for Advanced Study; Estados Unidos Fil: Huerta, Marina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Universidad Nacional de Cuyo. Secretaria de Ciencia y Técnica; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina. Institute for Advanced Study; Estados Unidos |
description |
We study entanglement entropy (EE) for a Maxwell field in (2+1) dimensions. We do numerical calculations in two-dimensional lattices. This gives a concrete example of the general results of our recent work [1] on entropy for lattice gauge fields using an algebraic approach. To evaluate the entropies we extend the standard calculation methods for the entropy of Gaussian states in canonical commutation algebras to the more general case of algebras with center and arbitrary numerical commutators. We find that while the entropy depends on the details of the algebra choice, mutual information has a well defined continuum limit as predicted in [1]. We study several universal terms for the entropy of the Maxwell field and compare with the case of a massless scalar field. We find some interesting new phenomena: an "evanescent" logarithmically divergent term in the entropy with topological coefficient which does not have any correspondence with ultraviolet entanglement in the universal quantities, and a nonstandard way in which strong subadditivity is realized. Based on the results of our calculations we propose a generalization of strong subadditivity for the entropy on some algebras that are not in tensor product. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/180481 Casini, Horacio German; Huerta, Marina; Entanglement entropy for a Maxwell field: Numerical calculation on a two dimensional lattice; American Physical Society; Physical Review D: Particles, Fields, Gravitation and Cosmology; 90; 10; 11-2014; 1-27 0556-2821 1550-7998 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/180481 |
identifier_str_mv |
Casini, Horacio German; Huerta, Marina; Entanglement entropy for a Maxwell field: Numerical calculation on a two dimensional lattice; American Physical Society; Physical Review D: Particles, Fields, Gravitation and Cosmology; 90; 10; 11-2014; 1-27 0556-2821 1550-7998 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prd/abstract/10.1103/PhysRevD.90.105013 info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.90.105013 info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1406.2991 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980328409399296 |
score |
12.993085 |