Entanglement entropy for a Maxwell field: Numerical calculation on a two dimensional lattice

Autores
Casini, Horacio German; Huerta, Marina
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study entanglement entropy (EE) for a Maxwell field in (2+1) dimensions. We do numerical calculations in two-dimensional lattices. This gives a concrete example of the general results of our recent work [1] on entropy for lattice gauge fields using an algebraic approach. To evaluate the entropies we extend the standard calculation methods for the entropy of Gaussian states in canonical commutation algebras to the more general case of algebras with center and arbitrary numerical commutators. We find that while the entropy depends on the details of the algebra choice, mutual information has a well defined continuum limit as predicted in [1]. We study several universal terms for the entropy of the Maxwell field and compare with the case of a massless scalar field. We find some interesting new phenomena: an "evanescent" logarithmically divergent term in the entropy with topological coefficient which does not have any correspondence with ultraviolet entanglement in the universal quantities, and a nonstandard way in which strong subadditivity is realized. Based on the results of our calculations we propose a generalization of strong subadditivity for the entropy on some algebras that are not in tensor product.
Fil: Casini, Horacio German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Universidad Nacional de Cuyo. Secretaria de Ciencia y Técnica; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina. Institute for Advanced Study; Estados Unidos
Fil: Huerta, Marina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Universidad Nacional de Cuyo. Secretaria de Ciencia y Técnica; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina. Institute for Advanced Study; Estados Unidos
Materia
Entanglement
Gauge
Fields
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/180481

id CONICETDig_de66ba8be828447f84ce3d85c4c8bdcc
oai_identifier_str oai:ri.conicet.gov.ar:11336/180481
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Entanglement entropy for a Maxwell field: Numerical calculation on a two dimensional latticeCasini, Horacio GermanHuerta, MarinaEntanglementGaugeFieldshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We study entanglement entropy (EE) for a Maxwell field in (2+1) dimensions. We do numerical calculations in two-dimensional lattices. This gives a concrete example of the general results of our recent work [1] on entropy for lattice gauge fields using an algebraic approach. To evaluate the entropies we extend the standard calculation methods for the entropy of Gaussian states in canonical commutation algebras to the more general case of algebras with center and arbitrary numerical commutators. We find that while the entropy depends on the details of the algebra choice, mutual information has a well defined continuum limit as predicted in [1]. We study several universal terms for the entropy of the Maxwell field and compare with the case of a massless scalar field. We find some interesting new phenomena: an "evanescent" logarithmically divergent term in the entropy with topological coefficient which does not have any correspondence with ultraviolet entanglement in the universal quantities, and a nonstandard way in which strong subadditivity is realized. Based on the results of our calculations we propose a generalization of strong subadditivity for the entropy on some algebras that are not in tensor product.Fil: Casini, Horacio German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Universidad Nacional de Cuyo. Secretaria de Ciencia y Técnica; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina. Institute for Advanced Study; Estados UnidosFil: Huerta, Marina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Universidad Nacional de Cuyo. Secretaria de Ciencia y Técnica; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina. Institute for Advanced Study; Estados UnidosAmerican Physical Society2014-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/180481Casini, Horacio German; Huerta, Marina; Entanglement entropy for a Maxwell field: Numerical calculation on a two dimensional lattice; American Physical Society; Physical Review D: Particles, Fields, Gravitation and Cosmology; 90; 10; 11-2014; 1-270556-28211550-7998CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prd/abstract/10.1103/PhysRevD.90.105013info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.90.105013info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1406.2991info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:07:22Zoai:ri.conicet.gov.ar:11336/180481instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:07:23.071CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Entanglement entropy for a Maxwell field: Numerical calculation on a two dimensional lattice
title Entanglement entropy for a Maxwell field: Numerical calculation on a two dimensional lattice
spellingShingle Entanglement entropy for a Maxwell field: Numerical calculation on a two dimensional lattice
Casini, Horacio German
Entanglement
Gauge
Fields
title_short Entanglement entropy for a Maxwell field: Numerical calculation on a two dimensional lattice
title_full Entanglement entropy for a Maxwell field: Numerical calculation on a two dimensional lattice
title_fullStr Entanglement entropy for a Maxwell field: Numerical calculation on a two dimensional lattice
title_full_unstemmed Entanglement entropy for a Maxwell field: Numerical calculation on a two dimensional lattice
title_sort Entanglement entropy for a Maxwell field: Numerical calculation on a two dimensional lattice
dc.creator.none.fl_str_mv Casini, Horacio German
Huerta, Marina
author Casini, Horacio German
author_facet Casini, Horacio German
Huerta, Marina
author_role author
author2 Huerta, Marina
author2_role author
dc.subject.none.fl_str_mv Entanglement
Gauge
Fields
topic Entanglement
Gauge
Fields
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We study entanglement entropy (EE) for a Maxwell field in (2+1) dimensions. We do numerical calculations in two-dimensional lattices. This gives a concrete example of the general results of our recent work [1] on entropy for lattice gauge fields using an algebraic approach. To evaluate the entropies we extend the standard calculation methods for the entropy of Gaussian states in canonical commutation algebras to the more general case of algebras with center and arbitrary numerical commutators. We find that while the entropy depends on the details of the algebra choice, mutual information has a well defined continuum limit as predicted in [1]. We study several universal terms for the entropy of the Maxwell field and compare with the case of a massless scalar field. We find some interesting new phenomena: an "evanescent" logarithmically divergent term in the entropy with topological coefficient which does not have any correspondence with ultraviolet entanglement in the universal quantities, and a nonstandard way in which strong subadditivity is realized. Based on the results of our calculations we propose a generalization of strong subadditivity for the entropy on some algebras that are not in tensor product.
Fil: Casini, Horacio German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Universidad Nacional de Cuyo. Secretaria de Ciencia y Técnica; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina. Institute for Advanced Study; Estados Unidos
Fil: Huerta, Marina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Universidad Nacional de Cuyo. Secretaria de Ciencia y Técnica; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina. Institute for Advanced Study; Estados Unidos
description We study entanglement entropy (EE) for a Maxwell field in (2+1) dimensions. We do numerical calculations in two-dimensional lattices. This gives a concrete example of the general results of our recent work [1] on entropy for lattice gauge fields using an algebraic approach. To evaluate the entropies we extend the standard calculation methods for the entropy of Gaussian states in canonical commutation algebras to the more general case of algebras with center and arbitrary numerical commutators. We find that while the entropy depends on the details of the algebra choice, mutual information has a well defined continuum limit as predicted in [1]. We study several universal terms for the entropy of the Maxwell field and compare with the case of a massless scalar field. We find some interesting new phenomena: an "evanescent" logarithmically divergent term in the entropy with topological coefficient which does not have any correspondence with ultraviolet entanglement in the universal quantities, and a nonstandard way in which strong subadditivity is realized. Based on the results of our calculations we propose a generalization of strong subadditivity for the entropy on some algebras that are not in tensor product.
publishDate 2014
dc.date.none.fl_str_mv 2014-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/180481
Casini, Horacio German; Huerta, Marina; Entanglement entropy for a Maxwell field: Numerical calculation on a two dimensional lattice; American Physical Society; Physical Review D: Particles, Fields, Gravitation and Cosmology; 90; 10; 11-2014; 1-27
0556-2821
1550-7998
CONICET Digital
CONICET
url http://hdl.handle.net/11336/180481
identifier_str_mv Casini, Horacio German; Huerta, Marina; Entanglement entropy for a Maxwell field: Numerical calculation on a two dimensional lattice; American Physical Society; Physical Review D: Particles, Fields, Gravitation and Cosmology; 90; 10; 11-2014; 1-27
0556-2821
1550-7998
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prd/abstract/10.1103/PhysRevD.90.105013
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.90.105013
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1406.2991
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980328409399296
score 12.993085