Entanglement entropy of a Rarita-Schwinger field in a sphere
- Autores
- Benedetti, Valentin; Daguerre, Lucas
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study the universal logarithmic coefficient of the entanglement entropy in a sphere for free fermionic field theories in a d=4 Minkowski spacetime. As a warm-up, we revisit the free massless spin-1/2 field case by employing a dimensional reduction to the d=2 half-line and a subsequent numerical real-time computation on a lattice. Surprisingly, the area coefficient diverges for a radial discretization but is finite for a geometric regularization induced by the mutual information. The resultant universal logarithmic coefficient -11/90 is consistent with the literature. For the free massless spin-3/2 field, the Rarita-Schwinger field, we also perform a dimensional reduction to the half-line. The reduced Hamiltonian coincides with the spin-1/2 one, except for the omission of the lowest total angular momentum modes. This gives a universal logarithmic coefficient of -71/90. We discuss the physical interpretation of the universal logarithmic coefficient for free higher-spin field theories without a stress-energy tensor.
Fil: Benedetti, Valentin. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
Fil: Daguerre, Lucas. University of California at Davis; Estados Unidos - Materia
-
ENTANGLEMENT ENTROPY
DIMENSIONAL REDUCTION
RARITA-SCHWINGER FIELD
FERMIONS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/225181
Ver los metadatos del registro completo
id |
CONICETDig_0d00c9554906f360993d439a17be1ed8 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/225181 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Entanglement entropy of a Rarita-Schwinger field in a sphereBenedetti, ValentinDaguerre, LucasENTANGLEMENT ENTROPYDIMENSIONAL REDUCTIONRARITA-SCHWINGER FIELDFERMIONShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We study the universal logarithmic coefficient of the entanglement entropy in a sphere for free fermionic field theories in a d=4 Minkowski spacetime. As a warm-up, we revisit the free massless spin-1/2 field case by employing a dimensional reduction to the d=2 half-line and a subsequent numerical real-time computation on a lattice. Surprisingly, the area coefficient diverges for a radial discretization but is finite for a geometric regularization induced by the mutual information. The resultant universal logarithmic coefficient -11/90 is consistent with the literature. For the free massless spin-3/2 field, the Rarita-Schwinger field, we also perform a dimensional reduction to the half-line. The reduced Hamiltonian coincides with the spin-1/2 one, except for the omission of the lowest total angular momentum modes. This gives a universal logarithmic coefficient of -71/90. We discuss the physical interpretation of the universal logarithmic coefficient for free higher-spin field theories without a stress-energy tensor.Fil: Benedetti, Valentin. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Daguerre, Lucas. University of California at Davis; Estados UnidosAmerican Physical Society2023-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/225181Benedetti, Valentin; Daguerre, Lucas; Entanglement entropy of a Rarita-Schwinger field in a sphere; American Physical Society; Physical Review D; 108; 8; 10-2023; 1-222470-00102470-0029CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.108.086015info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:37:37Zoai:ri.conicet.gov.ar:11336/225181instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:37:38.299CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Entanglement entropy of a Rarita-Schwinger field in a sphere |
title |
Entanglement entropy of a Rarita-Schwinger field in a sphere |
spellingShingle |
Entanglement entropy of a Rarita-Schwinger field in a sphere Benedetti, Valentin ENTANGLEMENT ENTROPY DIMENSIONAL REDUCTION RARITA-SCHWINGER FIELD FERMIONS |
title_short |
Entanglement entropy of a Rarita-Schwinger field in a sphere |
title_full |
Entanglement entropy of a Rarita-Schwinger field in a sphere |
title_fullStr |
Entanglement entropy of a Rarita-Schwinger field in a sphere |
title_full_unstemmed |
Entanglement entropy of a Rarita-Schwinger field in a sphere |
title_sort |
Entanglement entropy of a Rarita-Schwinger field in a sphere |
dc.creator.none.fl_str_mv |
Benedetti, Valentin Daguerre, Lucas |
author |
Benedetti, Valentin |
author_facet |
Benedetti, Valentin Daguerre, Lucas |
author_role |
author |
author2 |
Daguerre, Lucas |
author2_role |
author |
dc.subject.none.fl_str_mv |
ENTANGLEMENT ENTROPY DIMENSIONAL REDUCTION RARITA-SCHWINGER FIELD FERMIONS |
topic |
ENTANGLEMENT ENTROPY DIMENSIONAL REDUCTION RARITA-SCHWINGER FIELD FERMIONS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We study the universal logarithmic coefficient of the entanglement entropy in a sphere for free fermionic field theories in a d=4 Minkowski spacetime. As a warm-up, we revisit the free massless spin-1/2 field case by employing a dimensional reduction to the d=2 half-line and a subsequent numerical real-time computation on a lattice. Surprisingly, the area coefficient diverges for a radial discretization but is finite for a geometric regularization induced by the mutual information. The resultant universal logarithmic coefficient -11/90 is consistent with the literature. For the free massless spin-3/2 field, the Rarita-Schwinger field, we also perform a dimensional reduction to the half-line. The reduced Hamiltonian coincides with the spin-1/2 one, except for the omission of the lowest total angular momentum modes. This gives a universal logarithmic coefficient of -71/90. We discuss the physical interpretation of the universal logarithmic coefficient for free higher-spin field theories without a stress-energy tensor. Fil: Benedetti, Valentin. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina Fil: Daguerre, Lucas. University of California at Davis; Estados Unidos |
description |
We study the universal logarithmic coefficient of the entanglement entropy in a sphere for free fermionic field theories in a d=4 Minkowski spacetime. As a warm-up, we revisit the free massless spin-1/2 field case by employing a dimensional reduction to the d=2 half-line and a subsequent numerical real-time computation on a lattice. Surprisingly, the area coefficient diverges for a radial discretization but is finite for a geometric regularization induced by the mutual information. The resultant universal logarithmic coefficient -11/90 is consistent with the literature. For the free massless spin-3/2 field, the Rarita-Schwinger field, we also perform a dimensional reduction to the half-line. The reduced Hamiltonian coincides with the spin-1/2 one, except for the omission of the lowest total angular momentum modes. This gives a universal logarithmic coefficient of -71/90. We discuss the physical interpretation of the universal logarithmic coefficient for free higher-spin field theories without a stress-energy tensor. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/225181 Benedetti, Valentin; Daguerre, Lucas; Entanglement entropy of a Rarita-Schwinger field in a sphere; American Physical Society; Physical Review D; 108; 8; 10-2023; 1-22 2470-0010 2470-0029 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/225181 |
identifier_str_mv |
Benedetti, Valentin; Daguerre, Lucas; Entanglement entropy of a Rarita-Schwinger field in a sphere; American Physical Society; Physical Review D; 108; 8; 10-2023; 1-22 2470-0010 2470-0029 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.108.086015 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613186391638016 |
score |
13.070432 |