Entanglement entropy of a Rarita-Schwinger field in a sphere

Autores
Benedetti, Valentin; Daguerre, Lucas
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study the universal logarithmic coefficient of the entanglement entropy in a sphere for free fermionic field theories in a d=4 Minkowski spacetime. As a warm-up, we revisit the free massless spin-1/2 field case by employing a dimensional reduction to the d=2 half-line and a subsequent numerical real-time computation on a lattice. Surprisingly, the area coefficient diverges for a radial discretization but is finite for a geometric regularization induced by the mutual information. The resultant universal logarithmic coefficient -11/90 is consistent with the literature. For the free massless spin-3/2 field, the Rarita-Schwinger field, we also perform a dimensional reduction to the half-line. The reduced Hamiltonian coincides with the spin-1/2 one, except for the omission of the lowest total angular momentum modes. This gives a universal logarithmic coefficient of -71/90. We discuss the physical interpretation of the universal logarithmic coefficient for free higher-spin field theories without a stress-energy tensor.
Fil: Benedetti, Valentin. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
Fil: Daguerre, Lucas. University of California at Davis; Estados Unidos
Materia
ENTANGLEMENT ENTROPY
DIMENSIONAL REDUCTION
RARITA-SCHWINGER FIELD
FERMIONS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/225181

id CONICETDig_0d00c9554906f360993d439a17be1ed8
oai_identifier_str oai:ri.conicet.gov.ar:11336/225181
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Entanglement entropy of a Rarita-Schwinger field in a sphereBenedetti, ValentinDaguerre, LucasENTANGLEMENT ENTROPYDIMENSIONAL REDUCTIONRARITA-SCHWINGER FIELDFERMIONShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We study the universal logarithmic coefficient of the entanglement entropy in a sphere for free fermionic field theories in a d=4 Minkowski spacetime. As a warm-up, we revisit the free massless spin-1/2 field case by employing a dimensional reduction to the d=2 half-line and a subsequent numerical real-time computation on a lattice. Surprisingly, the area coefficient diverges for a radial discretization but is finite for a geometric regularization induced by the mutual information. The resultant universal logarithmic coefficient -11/90 is consistent with the literature. For the free massless spin-3/2 field, the Rarita-Schwinger field, we also perform a dimensional reduction to the half-line. The reduced Hamiltonian coincides with the spin-1/2 one, except for the omission of the lowest total angular momentum modes. This gives a universal logarithmic coefficient of -71/90. We discuss the physical interpretation of the universal logarithmic coefficient for free higher-spin field theories without a stress-energy tensor.Fil: Benedetti, Valentin. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Daguerre, Lucas. University of California at Davis; Estados UnidosAmerican Physical Society2023-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/225181Benedetti, Valentin; Daguerre, Lucas; Entanglement entropy of a Rarita-Schwinger field in a sphere; American Physical Society; Physical Review D; 108; 8; 10-2023; 1-222470-00102470-0029CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.108.086015info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:37:37Zoai:ri.conicet.gov.ar:11336/225181instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:37:38.299CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Entanglement entropy of a Rarita-Schwinger field in a sphere
title Entanglement entropy of a Rarita-Schwinger field in a sphere
spellingShingle Entanglement entropy of a Rarita-Schwinger field in a sphere
Benedetti, Valentin
ENTANGLEMENT ENTROPY
DIMENSIONAL REDUCTION
RARITA-SCHWINGER FIELD
FERMIONS
title_short Entanglement entropy of a Rarita-Schwinger field in a sphere
title_full Entanglement entropy of a Rarita-Schwinger field in a sphere
title_fullStr Entanglement entropy of a Rarita-Schwinger field in a sphere
title_full_unstemmed Entanglement entropy of a Rarita-Schwinger field in a sphere
title_sort Entanglement entropy of a Rarita-Schwinger field in a sphere
dc.creator.none.fl_str_mv Benedetti, Valentin
Daguerre, Lucas
author Benedetti, Valentin
author_facet Benedetti, Valentin
Daguerre, Lucas
author_role author
author2 Daguerre, Lucas
author2_role author
dc.subject.none.fl_str_mv ENTANGLEMENT ENTROPY
DIMENSIONAL REDUCTION
RARITA-SCHWINGER FIELD
FERMIONS
topic ENTANGLEMENT ENTROPY
DIMENSIONAL REDUCTION
RARITA-SCHWINGER FIELD
FERMIONS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We study the universal logarithmic coefficient of the entanglement entropy in a sphere for free fermionic field theories in a d=4 Minkowski spacetime. As a warm-up, we revisit the free massless spin-1/2 field case by employing a dimensional reduction to the d=2 half-line and a subsequent numerical real-time computation on a lattice. Surprisingly, the area coefficient diverges for a radial discretization but is finite for a geometric regularization induced by the mutual information. The resultant universal logarithmic coefficient -11/90 is consistent with the literature. For the free massless spin-3/2 field, the Rarita-Schwinger field, we also perform a dimensional reduction to the half-line. The reduced Hamiltonian coincides with the spin-1/2 one, except for the omission of the lowest total angular momentum modes. This gives a universal logarithmic coefficient of -71/90. We discuss the physical interpretation of the universal logarithmic coefficient for free higher-spin field theories without a stress-energy tensor.
Fil: Benedetti, Valentin. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
Fil: Daguerre, Lucas. University of California at Davis; Estados Unidos
description We study the universal logarithmic coefficient of the entanglement entropy in a sphere for free fermionic field theories in a d=4 Minkowski spacetime. As a warm-up, we revisit the free massless spin-1/2 field case by employing a dimensional reduction to the d=2 half-line and a subsequent numerical real-time computation on a lattice. Surprisingly, the area coefficient diverges for a radial discretization but is finite for a geometric regularization induced by the mutual information. The resultant universal logarithmic coefficient -11/90 is consistent with the literature. For the free massless spin-3/2 field, the Rarita-Schwinger field, we also perform a dimensional reduction to the half-line. The reduced Hamiltonian coincides with the spin-1/2 one, except for the omission of the lowest total angular momentum modes. This gives a universal logarithmic coefficient of -71/90. We discuss the physical interpretation of the universal logarithmic coefficient for free higher-spin field theories without a stress-energy tensor.
publishDate 2023
dc.date.none.fl_str_mv 2023-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/225181
Benedetti, Valentin; Daguerre, Lucas; Entanglement entropy of a Rarita-Schwinger field in a sphere; American Physical Society; Physical Review D; 108; 8; 10-2023; 1-22
2470-0010
2470-0029
CONICET Digital
CONICET
url http://hdl.handle.net/11336/225181
identifier_str_mv Benedetti, Valentin; Daguerre, Lucas; Entanglement entropy of a Rarita-Schwinger field in a sphere; American Physical Society; Physical Review D; 108; 8; 10-2023; 1-22
2470-0010
2470-0029
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.108.086015
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613186391638016
score 13.070432