On the bend number of circular-arc graphs as edge intersection graphs of paths on a grid
- Autores
- Alcón, Liliana Graciela; Bonomo, Flavia; Duran, Guillermo Alfredo; Gutierrez, Marisa; Mazzoleni, María Pía; Ries, Bernard; Valencia Pavón, Mario
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Golumbic, Lipshteyn and Stern [12] proved that every graph can be represented as the edge intersection graph of paths on a grid (EPG graph), i.e., one can associate with each vertex of the graph a nontrivial path on a rectangular grid such that two vertices are adjacent if and only if the corresponding paths share at least one edge of the grid. For a nonnegative integer k, Bk-EPG graphs are defined as EPG graphs admitting a model in which each path has at most k bends. Circular-arc graphs are intersection graphs of open arcs of a circle. It is easy to see that every circular-arc graph is a B4-EPG graph, by embedding the circle into a rectangle of the grid. In this paper, we prove that circular-arc graphs are B3-EPG, and that there exist circular-arc graphs which are not B2-EPG. If we restrict ourselves to rectangular representations (i.e., the union of the paths used in the model is contained in the boundary of a rectangle of the grid), we obtain EPR (edge intersection of paths in a rectangle) representations. We may define Bk-EPR graphs, k≥0, the same way as Bk-EPG graphs. Circular-arc graphs are clearly B4-EPR graphs and we will show that there exist circular-arc graphs that are not B3-EPR graphs. We also show that normal circular-arc graphs are B2-EPR graphs and that there exist normal circular-arc graphs that are not B1-EPR graphs. Finally, we characterize B1-EPR graphs by a family of minimal forbidden induced subgraphs, and show that they form a subclass of normal Helly circular-arc graphs.
Fil: Alcón, Liliana Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina
Fil: Bonomo, Flavia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Cs.exactas y Naturales. Departamento de Computación. Algoritmos, Complejidad y Aplicaciones; Argentina
Fil: Duran, Guillermo Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Universidad de Chile; Chile
Fil: Gutierrez, Marisa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina
Fil: Mazzoleni, María Pía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina
Fil: Ries, Bernard. Université de Fribourg; Suiza
Fil: Valencia Pavón, Mario. Universite de Paris 13-Nord. Laboratoire d'informatique de L'Université Paris-Nord; Francia - Materia
-
(Normal, Helly) Circular-Arc Graphs
Edge Intersection Graphs
Forbidden Induced Subgraphs
Paths on A Grid
Powers of Cycles - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/83118
Ver los metadatos del registro completo
id |
CONICETDig_1430a5296170f21267beff2da30cf9a6 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/83118 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On the bend number of circular-arc graphs as edge intersection graphs of paths on a gridAlcón, Liliana GracielaBonomo, FlaviaDuran, Guillermo AlfredoGutierrez, MarisaMazzoleni, María PíaRies, BernardValencia Pavón, Mario(Normal, Helly) Circular-Arc GraphsEdge Intersection GraphsForbidden Induced SubgraphsPaths on A GridPowers of Cycleshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Golumbic, Lipshteyn and Stern [12] proved that every graph can be represented as the edge intersection graph of paths on a grid (EPG graph), i.e., one can associate with each vertex of the graph a nontrivial path on a rectangular grid such that two vertices are adjacent if and only if the corresponding paths share at least one edge of the grid. For a nonnegative integer k, Bk-EPG graphs are defined as EPG graphs admitting a model in which each path has at most k bends. Circular-arc graphs are intersection graphs of open arcs of a circle. It is easy to see that every circular-arc graph is a B4-EPG graph, by embedding the circle into a rectangle of the grid. In this paper, we prove that circular-arc graphs are B3-EPG, and that there exist circular-arc graphs which are not B2-EPG. If we restrict ourselves to rectangular representations (i.e., the union of the paths used in the model is contained in the boundary of a rectangle of the grid), we obtain EPR (edge intersection of paths in a rectangle) representations. We may define Bk-EPR graphs, k≥0, the same way as Bk-EPG graphs. Circular-arc graphs are clearly B4-EPR graphs and we will show that there exist circular-arc graphs that are not B3-EPR graphs. We also show that normal circular-arc graphs are B2-EPR graphs and that there exist normal circular-arc graphs that are not B1-EPR graphs. Finally, we characterize B1-EPR graphs by a family of minimal forbidden induced subgraphs, and show that they form a subclass of normal Helly circular-arc graphs.Fil: Alcón, Liliana Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; ArgentinaFil: Bonomo, Flavia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Cs.exactas y Naturales. Departamento de Computación. Algoritmos, Complejidad y Aplicaciones; ArgentinaFil: Duran, Guillermo Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Universidad de Chile; ChileFil: Gutierrez, Marisa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; ArgentinaFil: Mazzoleni, María Pía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; ArgentinaFil: Ries, Bernard. Université de Fribourg; SuizaFil: Valencia Pavón, Mario. Universite de Paris 13-Nord. Laboratoire d'informatique de L'Université Paris-Nord; FranciaElsevier Science2018-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/83118Alcón, Liliana Graciela; Bonomo, Flavia; Duran, Guillermo Alfredo; Gutierrez, Marisa; Mazzoleni, María Pía; et al.; On the bend number of circular-arc graphs as edge intersection graphs of paths on a grid; Elsevier Science; Discrete Applied Mathematics; 234; 1-2018; 12-210166-218XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0166218X16303687info:eu-repo/semantics/altIdentifier/doi/10.1016/j.dam.2016.08.004info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1506.08750info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:03:46Zoai:ri.conicet.gov.ar:11336/83118instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:03:46.446CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On the bend number of circular-arc graphs as edge intersection graphs of paths on a grid |
title |
On the bend number of circular-arc graphs as edge intersection graphs of paths on a grid |
spellingShingle |
On the bend number of circular-arc graphs as edge intersection graphs of paths on a grid Alcón, Liliana Graciela (Normal, Helly) Circular-Arc Graphs Edge Intersection Graphs Forbidden Induced Subgraphs Paths on A Grid Powers of Cycles |
title_short |
On the bend number of circular-arc graphs as edge intersection graphs of paths on a grid |
title_full |
On the bend number of circular-arc graphs as edge intersection graphs of paths on a grid |
title_fullStr |
On the bend number of circular-arc graphs as edge intersection graphs of paths on a grid |
title_full_unstemmed |
On the bend number of circular-arc graphs as edge intersection graphs of paths on a grid |
title_sort |
On the bend number of circular-arc graphs as edge intersection graphs of paths on a grid |
dc.creator.none.fl_str_mv |
Alcón, Liliana Graciela Bonomo, Flavia Duran, Guillermo Alfredo Gutierrez, Marisa Mazzoleni, María Pía Ries, Bernard Valencia Pavón, Mario |
author |
Alcón, Liliana Graciela |
author_facet |
Alcón, Liliana Graciela Bonomo, Flavia Duran, Guillermo Alfredo Gutierrez, Marisa Mazzoleni, María Pía Ries, Bernard Valencia Pavón, Mario |
author_role |
author |
author2 |
Bonomo, Flavia Duran, Guillermo Alfredo Gutierrez, Marisa Mazzoleni, María Pía Ries, Bernard Valencia Pavón, Mario |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
(Normal, Helly) Circular-Arc Graphs Edge Intersection Graphs Forbidden Induced Subgraphs Paths on A Grid Powers of Cycles |
topic |
(Normal, Helly) Circular-Arc Graphs Edge Intersection Graphs Forbidden Induced Subgraphs Paths on A Grid Powers of Cycles |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Golumbic, Lipshteyn and Stern [12] proved that every graph can be represented as the edge intersection graph of paths on a grid (EPG graph), i.e., one can associate with each vertex of the graph a nontrivial path on a rectangular grid such that two vertices are adjacent if and only if the corresponding paths share at least one edge of the grid. For a nonnegative integer k, Bk-EPG graphs are defined as EPG graphs admitting a model in which each path has at most k bends. Circular-arc graphs are intersection graphs of open arcs of a circle. It is easy to see that every circular-arc graph is a B4-EPG graph, by embedding the circle into a rectangle of the grid. In this paper, we prove that circular-arc graphs are B3-EPG, and that there exist circular-arc graphs which are not B2-EPG. If we restrict ourselves to rectangular representations (i.e., the union of the paths used in the model is contained in the boundary of a rectangle of the grid), we obtain EPR (edge intersection of paths in a rectangle) representations. We may define Bk-EPR graphs, k≥0, the same way as Bk-EPG graphs. Circular-arc graphs are clearly B4-EPR graphs and we will show that there exist circular-arc graphs that are not B3-EPR graphs. We also show that normal circular-arc graphs are B2-EPR graphs and that there exist normal circular-arc graphs that are not B1-EPR graphs. Finally, we characterize B1-EPR graphs by a family of minimal forbidden induced subgraphs, and show that they form a subclass of normal Helly circular-arc graphs. Fil: Alcón, Liliana Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina Fil: Bonomo, Flavia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Cs.exactas y Naturales. Departamento de Computación. Algoritmos, Complejidad y Aplicaciones; Argentina Fil: Duran, Guillermo Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Universidad de Chile; Chile Fil: Gutierrez, Marisa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina Fil: Mazzoleni, María Pía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina Fil: Ries, Bernard. Université de Fribourg; Suiza Fil: Valencia Pavón, Mario. Universite de Paris 13-Nord. Laboratoire d'informatique de L'Université Paris-Nord; Francia |
description |
Golumbic, Lipshteyn and Stern [12] proved that every graph can be represented as the edge intersection graph of paths on a grid (EPG graph), i.e., one can associate with each vertex of the graph a nontrivial path on a rectangular grid such that two vertices are adjacent if and only if the corresponding paths share at least one edge of the grid. For a nonnegative integer k, Bk-EPG graphs are defined as EPG graphs admitting a model in which each path has at most k bends. Circular-arc graphs are intersection graphs of open arcs of a circle. It is easy to see that every circular-arc graph is a B4-EPG graph, by embedding the circle into a rectangle of the grid. In this paper, we prove that circular-arc graphs are B3-EPG, and that there exist circular-arc graphs which are not B2-EPG. If we restrict ourselves to rectangular representations (i.e., the union of the paths used in the model is contained in the boundary of a rectangle of the grid), we obtain EPR (edge intersection of paths in a rectangle) representations. We may define Bk-EPR graphs, k≥0, the same way as Bk-EPG graphs. Circular-arc graphs are clearly B4-EPR graphs and we will show that there exist circular-arc graphs that are not B3-EPR graphs. We also show that normal circular-arc graphs are B2-EPR graphs and that there exist normal circular-arc graphs that are not B1-EPR graphs. Finally, we characterize B1-EPR graphs by a family of minimal forbidden induced subgraphs, and show that they form a subclass of normal Helly circular-arc graphs. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/83118 Alcón, Liliana Graciela; Bonomo, Flavia; Duran, Guillermo Alfredo; Gutierrez, Marisa; Mazzoleni, María Pía; et al.; On the bend number of circular-arc graphs as edge intersection graphs of paths on a grid; Elsevier Science; Discrete Applied Mathematics; 234; 1-2018; 12-21 0166-218X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/83118 |
identifier_str_mv |
Alcón, Liliana Graciela; Bonomo, Flavia; Duran, Guillermo Alfredo; Gutierrez, Marisa; Mazzoleni, María Pía; et al.; On the bend number of circular-arc graphs as edge intersection graphs of paths on a grid; Elsevier Science; Discrete Applied Mathematics; 234; 1-2018; 12-21 0166-218X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0166218X16303687 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.dam.2016.08.004 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1506.08750 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269818746568704 |
score |
13.13397 |