Relationship among subjective responses, flavor, and chemical composition across more than 800 commercial cannabis varieties
- Autores
- de la Fuente de la Torre, Laura Alethia; Zamberlan, Federico; Sánchez Ferrán, Andrés; Carrillo, Facundo; Tagliazucchi, Enzo Rodolfo; Pallavicini, Carla
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Background: Widespread commercialization of cannabis has led to the introduction of brand names based onusers? subjective experience of psychological effects and flavors, but this process has occurred in the absence ofagreed standards. The objective of this work was to leverage information extracted from large databases toevaluate the consistency and validity of these subjective reports, and to determine their correlation with thereported cultivars and with estimates of their chemical composition (delta-9-THC, CBD, terpenes).Methods: We analyzed a large publicly available dataset extracted from Leafly.com where users freely reportedtheir experiences with cannabis cultivars, including different subjective effects and flavour associations. This analysiswas complemented with information on the chemical composition of a subset of the cultivars extracted fromPsilabs.org. The structure of this dataset was investigated using network analysis applied to the pairwise similaritiesbetween reported subjective effects and/or chemical compositions. Random forest classifiers were used to evaluatewhether reports of flavours and subjective effects could identify the labelled species cultivar. We applied NaturalLanguage Processing (NLP) tools to free narratives written by the users to validate the subjective effect and flavourtags. Finally, we explored the relationship between terpenoid content, cannabinoid composition and subjectivereports in a subset of the cultivars.Results: Machine learning classifiers distinguished between species tags given by ?Cannabis sativa? and ?Cannabisindica? based on the reported flavours:
= 0.828 ± 0.002 (p < 0.001); and effects: = 0.9965 ± 0.0002 (p <0.001). A significant relationship between terpene and cannabinoid content was suggested by positive correlationsbetween subjective effect and flavour tags (p < 0.05, False-Discovery-rate (FDR)-corrected); these correlationsclustered the reported effects into three groups that represented unpleasant, stimulant and soothing effects. Theuse of predefined tags was validated by applying latent semantic analysis tools to unstructured written reviews, alsoproviding breed-specific topics consistent with their purported subjective effects. Terpene profiles matched theperceptual characterizations made by the users, particularly for the terpene-flavours graph (Q = 0.324).
Fil: de la Fuente de la Torre, Laura Alethia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Neurociencia Cognitiva y Traslacional. Fundación Ineco Rosario Sede del Incyt | Instituto de Neurología Cognitiva. Instituto de Neurociencia Cognitiva y Traslacional. Fundación Ineco Rosario Sede del Incyt | Fundación Favaloro. Instituto de Neurociencia Cognitiva y Traslacional. Fundación Ineco Rosario Sede del Incyt; Argentina
Fil: Zamberlan, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Sánchez Ferrán, Andrés. Universidad Nacional de Tucumán; Argentina
Fil: Carrillo, Facundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
Fil: Tagliazucchi, Enzo Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Pallavicini, Carla. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina - Materia
-
CANNABIS
CANNABINOIDS
TERPENES
FLAVOUR - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/140909
Ver los metadatos del registro completo
id |
CONICETDig_2e8c7b68a66735b40934dcdbc8f08572 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/140909 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Relationship among subjective responses, flavor, and chemical composition across more than 800 commercial cannabis varietiesde la Fuente de la Torre, Laura AlethiaZamberlan, FedericoSánchez Ferrán, AndrésCarrillo, FacundoTagliazucchi, Enzo RodolfoPallavicini, CarlaCANNABISCANNABINOIDSTERPENESFLAVOURhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Background: Widespread commercialization of cannabis has led to the introduction of brand names based onusers? subjective experience of psychological effects and flavors, but this process has occurred in the absence ofagreed standards. The objective of this work was to leverage information extracted from large databases toevaluate the consistency and validity of these subjective reports, and to determine their correlation with thereported cultivars and with estimates of their chemical composition (delta-9-THC, CBD, terpenes).Methods: We analyzed a large publicly available dataset extracted from Leafly.com where users freely reportedtheir experiences with cannabis cultivars, including different subjective effects and flavour associations. This analysiswas complemented with information on the chemical composition of a subset of the cultivars extracted fromPsilabs.org. The structure of this dataset was investigated using network analysis applied to the pairwise similaritiesbetween reported subjective effects and/or chemical compositions. Random forest classifiers were used to evaluatewhether reports of flavours and subjective effects could identify the labelled species cultivar. We applied NaturalLanguage Processing (NLP) tools to free narratives written by the users to validate the subjective effect and flavourtags. Finally, we explored the relationship between terpenoid content, cannabinoid composition and subjectivereports in a subset of the cultivars.Results: Machine learning classifiers distinguished between species tags given by ?Cannabis sativa? and ?Cannabisindica? based on the reported flavours: <AUC> = 0.828 ± 0.002 (p < 0.001); and effects: <AUC> = 0.9965 ± 0.0002 (p <0.001). A significant relationship between terpene and cannabinoid content was suggested by positive correlationsbetween subjective effect and flavour tags (p < 0.05, False-Discovery-rate (FDR)-corrected); these correlationsclustered the reported effects into three groups that represented unpleasant, stimulant and soothing effects. Theuse of predefined tags was validated by applying latent semantic analysis tools to unstructured written reviews, alsoproviding breed-specific topics consistent with their purported subjective effects. Terpene profiles matched theperceptual characterizations made by the users, particularly for the terpene-flavours graph (Q = 0.324).Fil: de la Fuente de la Torre, Laura Alethia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Neurociencia Cognitiva y Traslacional. Fundación Ineco Rosario Sede del Incyt | Instituto de Neurología Cognitiva. Instituto de Neurociencia Cognitiva y Traslacional. Fundación Ineco Rosario Sede del Incyt | Fundación Favaloro. Instituto de Neurociencia Cognitiva y Traslacional. Fundación Ineco Rosario Sede del Incyt; ArgentinaFil: Zamberlan, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Sánchez Ferrán, Andrés. Universidad Nacional de Tucumán; ArgentinaFil: Carrillo, Facundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaFil: Tagliazucchi, Enzo Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Pallavicini, Carla. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaBioMed Central2020-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/140909de la Fuente de la Torre, Laura Alethia; Zamberlan, Federico; Sánchez Ferrán, Andrés; Carrillo, Facundo; Tagliazucchi, Enzo Rodolfo; et al.; Relationship among subjective responses, flavor, and chemical composition across more than 800 commercial cannabis varieties; BioMed Central; Journal of Cannabis Research; 2; 1; 7-2020; 1-182522-5782CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://jcannabisresearch.biomedcentral.com/articles/10.1186/s42238-020-00028-yinfo:eu-repo/semantics/altIdentifier/doi/10.1186/s42238-020-00028-yinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:48:46Zoai:ri.conicet.gov.ar:11336/140909instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:48:47.124CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Relationship among subjective responses, flavor, and chemical composition across more than 800 commercial cannabis varieties |
title |
Relationship among subjective responses, flavor, and chemical composition across more than 800 commercial cannabis varieties |
spellingShingle |
Relationship among subjective responses, flavor, and chemical composition across more than 800 commercial cannabis varieties de la Fuente de la Torre, Laura Alethia CANNABIS CANNABINOIDS TERPENES FLAVOUR |
title_short |
Relationship among subjective responses, flavor, and chemical composition across more than 800 commercial cannabis varieties |
title_full |
Relationship among subjective responses, flavor, and chemical composition across more than 800 commercial cannabis varieties |
title_fullStr |
Relationship among subjective responses, flavor, and chemical composition across more than 800 commercial cannabis varieties |
title_full_unstemmed |
Relationship among subjective responses, flavor, and chemical composition across more than 800 commercial cannabis varieties |
title_sort |
Relationship among subjective responses, flavor, and chemical composition across more than 800 commercial cannabis varieties |
dc.creator.none.fl_str_mv |
de la Fuente de la Torre, Laura Alethia Zamberlan, Federico Sánchez Ferrán, Andrés Carrillo, Facundo Tagliazucchi, Enzo Rodolfo Pallavicini, Carla |
author |
de la Fuente de la Torre, Laura Alethia |
author_facet |
de la Fuente de la Torre, Laura Alethia Zamberlan, Federico Sánchez Ferrán, Andrés Carrillo, Facundo Tagliazucchi, Enzo Rodolfo Pallavicini, Carla |
author_role |
author |
author2 |
Zamberlan, Federico Sánchez Ferrán, Andrés Carrillo, Facundo Tagliazucchi, Enzo Rodolfo Pallavicini, Carla |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
CANNABIS CANNABINOIDS TERPENES FLAVOUR |
topic |
CANNABIS CANNABINOIDS TERPENES FLAVOUR |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Background: Widespread commercialization of cannabis has led to the introduction of brand names based onusers? subjective experience of psychological effects and flavors, but this process has occurred in the absence ofagreed standards. The objective of this work was to leverage information extracted from large databases toevaluate the consistency and validity of these subjective reports, and to determine their correlation with thereported cultivars and with estimates of their chemical composition (delta-9-THC, CBD, terpenes).Methods: We analyzed a large publicly available dataset extracted from Leafly.com where users freely reportedtheir experiences with cannabis cultivars, including different subjective effects and flavour associations. This analysiswas complemented with information on the chemical composition of a subset of the cultivars extracted fromPsilabs.org. The structure of this dataset was investigated using network analysis applied to the pairwise similaritiesbetween reported subjective effects and/or chemical compositions. Random forest classifiers were used to evaluatewhether reports of flavours and subjective effects could identify the labelled species cultivar. We applied NaturalLanguage Processing (NLP) tools to free narratives written by the users to validate the subjective effect and flavourtags. Finally, we explored the relationship between terpenoid content, cannabinoid composition and subjectivereports in a subset of the cultivars.Results: Machine learning classifiers distinguished between species tags given by ?Cannabis sativa? and ?Cannabisindica? based on the reported flavours: <AUC> = 0.828 ± 0.002 (p < 0.001); and effects: <AUC> = 0.9965 ± 0.0002 (p <0.001). A significant relationship between terpene and cannabinoid content was suggested by positive correlationsbetween subjective effect and flavour tags (p < 0.05, False-Discovery-rate (FDR)-corrected); these correlationsclustered the reported effects into three groups that represented unpleasant, stimulant and soothing effects. Theuse of predefined tags was validated by applying latent semantic analysis tools to unstructured written reviews, alsoproviding breed-specific topics consistent with their purported subjective effects. Terpene profiles matched theperceptual characterizations made by the users, particularly for the terpene-flavours graph (Q = 0.324). Fil: de la Fuente de la Torre, Laura Alethia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Neurociencia Cognitiva y Traslacional. Fundación Ineco Rosario Sede del Incyt | Instituto de Neurología Cognitiva. Instituto de Neurociencia Cognitiva y Traslacional. Fundación Ineco Rosario Sede del Incyt | Fundación Favaloro. Instituto de Neurociencia Cognitiva y Traslacional. Fundación Ineco Rosario Sede del Incyt; Argentina Fil: Zamberlan, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Sánchez Ferrán, Andrés. Universidad Nacional de Tucumán; Argentina Fil: Carrillo, Facundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina Fil: Tagliazucchi, Enzo Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Pallavicini, Carla. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina |
description |
Background: Widespread commercialization of cannabis has led to the introduction of brand names based onusers? subjective experience of psychological effects and flavors, but this process has occurred in the absence ofagreed standards. The objective of this work was to leverage information extracted from large databases toevaluate the consistency and validity of these subjective reports, and to determine their correlation with thereported cultivars and with estimates of their chemical composition (delta-9-THC, CBD, terpenes).Methods: We analyzed a large publicly available dataset extracted from Leafly.com where users freely reportedtheir experiences with cannabis cultivars, including different subjective effects and flavour associations. This analysiswas complemented with information on the chemical composition of a subset of the cultivars extracted fromPsilabs.org. The structure of this dataset was investigated using network analysis applied to the pairwise similaritiesbetween reported subjective effects and/or chemical compositions. Random forest classifiers were used to evaluatewhether reports of flavours and subjective effects could identify the labelled species cultivar. We applied NaturalLanguage Processing (NLP) tools to free narratives written by the users to validate the subjective effect and flavourtags. Finally, we explored the relationship between terpenoid content, cannabinoid composition and subjectivereports in a subset of the cultivars.Results: Machine learning classifiers distinguished between species tags given by ?Cannabis sativa? and ?Cannabisindica? based on the reported flavours: <AUC> = 0.828 ± 0.002 (p < 0.001); and effects: <AUC> = 0.9965 ± 0.0002 (p <0.001). A significant relationship between terpene and cannabinoid content was suggested by positive correlationsbetween subjective effect and flavour tags (p < 0.05, False-Discovery-rate (FDR)-corrected); these correlationsclustered the reported effects into three groups that represented unpleasant, stimulant and soothing effects. Theuse of predefined tags was validated by applying latent semantic analysis tools to unstructured written reviews, alsoproviding breed-specific topics consistent with their purported subjective effects. Terpene profiles matched theperceptual characterizations made by the users, particularly for the terpene-flavours graph (Q = 0.324). |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/140909 de la Fuente de la Torre, Laura Alethia; Zamberlan, Federico; Sánchez Ferrán, Andrés; Carrillo, Facundo; Tagliazucchi, Enzo Rodolfo; et al.; Relationship among subjective responses, flavor, and chemical composition across more than 800 commercial cannabis varieties; BioMed Central; Journal of Cannabis Research; 2; 1; 7-2020; 1-18 2522-5782 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/140909 |
identifier_str_mv |
de la Fuente de la Torre, Laura Alethia; Zamberlan, Federico; Sánchez Ferrán, Andrés; Carrillo, Facundo; Tagliazucchi, Enzo Rodolfo; et al.; Relationship among subjective responses, flavor, and chemical composition across more than 800 commercial cannabis varieties; BioMed Central; Journal of Cannabis Research; 2; 1; 7-2020; 1-18 2522-5782 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://jcannabisresearch.biomedcentral.com/articles/10.1186/s42238-020-00028-y info:eu-repo/semantics/altIdentifier/doi/10.1186/s42238-020-00028-y |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
BioMed Central |
publisher.none.fl_str_mv |
BioMed Central |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268939100356608 |
score |
13.13397 |