Antifungal and antibacterial activities of Cannabis sativa L. resins

Autores
Vozza Berardo, María Eugenia; Mendieta, Julieta Renee; Villamonte, María Daniela; Colman, Silvana Lorena; Nercessian, Debora
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Ethnopharmacological relevance: Cannabis sativa L. (Cannabaceae) is a plant native to Eastern Asia spread throughout the world because of its medicinal properties. Despite being used for thousands of years as a palliative therapeutic agent for many pathologies, in many countries research on its effects and properties could only be carried out in recent years, after its legalization. Aims of the study: Increasing resistance to traditional antimicrobial agents demands finding new strategies to fight against microbial infections in medical therapy and agricultural activities. Upon legalization in many countries, Cannabis sativa is gaining attention as a new source of active components, and the evidence for new applications of these compounds is constantly increasing. Methods: Extracts from five different varieties ofCannabis sativa were performed and their cannabinoids and terpenes profiles were determined by liquid and gas chromatography. Antimicrobial and antifungal activities against Gram (+) and Gram (−) bacteria, yeast and phytopathogen fungus were measured. To analyze a possible action mechanism, cell viability of bacteria and yeast was assessed by propidium iodide stain. Results: Cannabis varieties were grouped into chemotype I and II as a consequence of their cannabidiol (CBD) or tetrahydrocannabinol (THC) content. The terpenes profile was different in quantity and quality among varieties, with (−)b-pinene, b-myrcene, p-cymene and b-caryophyllene being present in all plants. All cannabis varieties were effective to different degree against Gram (+) and Gram (−) bacteria as well as on spore germination and vegetative development of phytopathogenic fungi. These effects were not correlated to the content of major cannabinoids such as CBD or THC, but with the presence of a complex terpenes profile. The effectiveness of the extracts allowed to reduce the necessary doses of a widely used commercial antifungal to prevent the development of fungal spores. Conclusion: All the extracts of the analysed cannabis varieties showed antibacterial and antifungal activities. In addition, plants belonging to the same chemotype showed different antimicrobial activity, demonstrating that the classification of cannabis strains based solely on THC and CBD content is not sufficient to justify their biological activities and that other compounds present in the extracts are involved in their action against pathogens. Cannabis extracts act in synergy with chemical fungicides, allowing to reduce its doses.
Fil: Vozza Berardo, María Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Biológicas. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Biológicas; Argentina
Fil: Mendieta, Julieta Renee. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Biológicas. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Biológicas; Argentina
Fil: Villamonte, María Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Biológicas. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Biológicas; Argentina
Fil: Colman, Silvana Lorena. Universidad Nacional de Mar del Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina
Fil: Nercessian, Debora. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Biológicas. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Biológicas; Argentina
Materia
CANNABIS SATIVA L.
ANTIFUNGAL ACTIVITY
ANTIBACTERIAL ACTIVITY
CANNABINOIDS
TERPENES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/236549

id CONICETDig_164b51b8445c496b99480cdaa3dbf303
oai_identifier_str oai:ri.conicet.gov.ar:11336/236549
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Antifungal and antibacterial activities of Cannabis sativa L. resinsVozza Berardo, María EugeniaMendieta, Julieta ReneeVillamonte, María DanielaColman, Silvana LorenaNercessian, DeboraCANNABIS SATIVA L.ANTIFUNGAL ACTIVITYANTIBACTERIAL ACTIVITYCANNABINOIDSTERPENEShttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Ethnopharmacological relevance: Cannabis sativa L. (Cannabaceae) is a plant native to Eastern Asia spread throughout the world because of its medicinal properties. Despite being used for thousands of years as a palliative therapeutic agent for many pathologies, in many countries research on its effects and properties could only be carried out in recent years, after its legalization. Aims of the study: Increasing resistance to traditional antimicrobial agents demands finding new strategies to fight against microbial infections in medical therapy and agricultural activities. Upon legalization in many countries, Cannabis sativa is gaining attention as a new source of active components, and the evidence for new applications of these compounds is constantly increasing. Methods: Extracts from five different varieties ofCannabis sativa were performed and their cannabinoids and terpenes profiles were determined by liquid and gas chromatography. Antimicrobial and antifungal activities against Gram (+) and Gram (−) bacteria, yeast and phytopathogen fungus were measured. To analyze a possible action mechanism, cell viability of bacteria and yeast was assessed by propidium iodide stain. Results: Cannabis varieties were grouped into chemotype I and II as a consequence of their cannabidiol (CBD) or tetrahydrocannabinol (THC) content. The terpenes profile was different in quantity and quality among varieties, with (−)b-pinene, b-myrcene, p-cymene and b-caryophyllene being present in all plants. All cannabis varieties were effective to different degree against Gram (+) and Gram (−) bacteria as well as on spore germination and vegetative development of phytopathogenic fungi. These effects were not correlated to the content of major cannabinoids such as CBD or THC, but with the presence of a complex terpenes profile. The effectiveness of the extracts allowed to reduce the necessary doses of a widely used commercial antifungal to prevent the development of fungal spores. Conclusion: All the extracts of the analysed cannabis varieties showed antibacterial and antifungal activities. In addition, plants belonging to the same chemotype showed different antimicrobial activity, demonstrating that the classification of cannabis strains based solely on THC and CBD content is not sufficient to justify their biological activities and that other compounds present in the extracts are involved in their action against pathogens. Cannabis extracts act in synergy with chemical fungicides, allowing to reduce its doses.Fil: Vozza Berardo, María Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Biológicas. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Biológicas; ArgentinaFil: Mendieta, Julieta Renee. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Biológicas. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Biológicas; ArgentinaFil: Villamonte, María Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Biológicas. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Biológicas; ArgentinaFil: Colman, Silvana Lorena. Universidad Nacional de Mar del Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; ArgentinaFil: Nercessian, Debora. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Biológicas. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Biológicas; ArgentinaElsevier Ireland2024-01-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/236549Vozza Berardo, María Eugenia; Mendieta, Julieta Renee; Villamonte, María Daniela; Colman, Silvana Lorena; Nercessian, Debora; Antifungal and antibacterial activities of Cannabis sativa L. resins; Elsevier Ireland; Journal of Ethnopharmacology; 318; 10-1-2024; 1-100378-8741CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0378874123007079info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jep.2023.116839info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:01:53Zoai:ri.conicet.gov.ar:11336/236549instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:01:53.754CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Antifungal and antibacterial activities of Cannabis sativa L. resins
title Antifungal and antibacterial activities of Cannabis sativa L. resins
spellingShingle Antifungal and antibacterial activities of Cannabis sativa L. resins
Vozza Berardo, María Eugenia
CANNABIS SATIVA L.
ANTIFUNGAL ACTIVITY
ANTIBACTERIAL ACTIVITY
CANNABINOIDS
TERPENES
title_short Antifungal and antibacterial activities of Cannabis sativa L. resins
title_full Antifungal and antibacterial activities of Cannabis sativa L. resins
title_fullStr Antifungal and antibacterial activities of Cannabis sativa L. resins
title_full_unstemmed Antifungal and antibacterial activities of Cannabis sativa L. resins
title_sort Antifungal and antibacterial activities of Cannabis sativa L. resins
dc.creator.none.fl_str_mv Vozza Berardo, María Eugenia
Mendieta, Julieta Renee
Villamonte, María Daniela
Colman, Silvana Lorena
Nercessian, Debora
author Vozza Berardo, María Eugenia
author_facet Vozza Berardo, María Eugenia
Mendieta, Julieta Renee
Villamonte, María Daniela
Colman, Silvana Lorena
Nercessian, Debora
author_role author
author2 Mendieta, Julieta Renee
Villamonte, María Daniela
Colman, Silvana Lorena
Nercessian, Debora
author2_role author
author
author
author
dc.subject.none.fl_str_mv CANNABIS SATIVA L.
ANTIFUNGAL ACTIVITY
ANTIBACTERIAL ACTIVITY
CANNABINOIDS
TERPENES
topic CANNABIS SATIVA L.
ANTIFUNGAL ACTIVITY
ANTIBACTERIAL ACTIVITY
CANNABINOIDS
TERPENES
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Ethnopharmacological relevance: Cannabis sativa L. (Cannabaceae) is a plant native to Eastern Asia spread throughout the world because of its medicinal properties. Despite being used for thousands of years as a palliative therapeutic agent for many pathologies, in many countries research on its effects and properties could only be carried out in recent years, after its legalization. Aims of the study: Increasing resistance to traditional antimicrobial agents demands finding new strategies to fight against microbial infections in medical therapy and agricultural activities. Upon legalization in many countries, Cannabis sativa is gaining attention as a new source of active components, and the evidence for new applications of these compounds is constantly increasing. Methods: Extracts from five different varieties ofCannabis sativa were performed and their cannabinoids and terpenes profiles were determined by liquid and gas chromatography. Antimicrobial and antifungal activities against Gram (+) and Gram (−) bacteria, yeast and phytopathogen fungus were measured. To analyze a possible action mechanism, cell viability of bacteria and yeast was assessed by propidium iodide stain. Results: Cannabis varieties were grouped into chemotype I and II as a consequence of their cannabidiol (CBD) or tetrahydrocannabinol (THC) content. The terpenes profile was different in quantity and quality among varieties, with (−)b-pinene, b-myrcene, p-cymene and b-caryophyllene being present in all plants. All cannabis varieties were effective to different degree against Gram (+) and Gram (−) bacteria as well as on spore germination and vegetative development of phytopathogenic fungi. These effects were not correlated to the content of major cannabinoids such as CBD or THC, but with the presence of a complex terpenes profile. The effectiveness of the extracts allowed to reduce the necessary doses of a widely used commercial antifungal to prevent the development of fungal spores. Conclusion: All the extracts of the analysed cannabis varieties showed antibacterial and antifungal activities. In addition, plants belonging to the same chemotype showed different antimicrobial activity, demonstrating that the classification of cannabis strains based solely on THC and CBD content is not sufficient to justify their biological activities and that other compounds present in the extracts are involved in their action against pathogens. Cannabis extracts act in synergy with chemical fungicides, allowing to reduce its doses.
Fil: Vozza Berardo, María Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Biológicas. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Biológicas; Argentina
Fil: Mendieta, Julieta Renee. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Biológicas. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Biológicas; Argentina
Fil: Villamonte, María Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Biológicas. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Biológicas; Argentina
Fil: Colman, Silvana Lorena. Universidad Nacional de Mar del Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina
Fil: Nercessian, Debora. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Biológicas. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Biológicas; Argentina
description Ethnopharmacological relevance: Cannabis sativa L. (Cannabaceae) is a plant native to Eastern Asia spread throughout the world because of its medicinal properties. Despite being used for thousands of years as a palliative therapeutic agent for many pathologies, in many countries research on its effects and properties could only be carried out in recent years, after its legalization. Aims of the study: Increasing resistance to traditional antimicrobial agents demands finding new strategies to fight against microbial infections in medical therapy and agricultural activities. Upon legalization in many countries, Cannabis sativa is gaining attention as a new source of active components, and the evidence for new applications of these compounds is constantly increasing. Methods: Extracts from five different varieties ofCannabis sativa were performed and their cannabinoids and terpenes profiles were determined by liquid and gas chromatography. Antimicrobial and antifungal activities against Gram (+) and Gram (−) bacteria, yeast and phytopathogen fungus were measured. To analyze a possible action mechanism, cell viability of bacteria and yeast was assessed by propidium iodide stain. Results: Cannabis varieties were grouped into chemotype I and II as a consequence of their cannabidiol (CBD) or tetrahydrocannabinol (THC) content. The terpenes profile was different in quantity and quality among varieties, with (−)b-pinene, b-myrcene, p-cymene and b-caryophyllene being present in all plants. All cannabis varieties were effective to different degree against Gram (+) and Gram (−) bacteria as well as on spore germination and vegetative development of phytopathogenic fungi. These effects were not correlated to the content of major cannabinoids such as CBD or THC, but with the presence of a complex terpenes profile. The effectiveness of the extracts allowed to reduce the necessary doses of a widely used commercial antifungal to prevent the development of fungal spores. Conclusion: All the extracts of the analysed cannabis varieties showed antibacterial and antifungal activities. In addition, plants belonging to the same chemotype showed different antimicrobial activity, demonstrating that the classification of cannabis strains based solely on THC and CBD content is not sufficient to justify their biological activities and that other compounds present in the extracts are involved in their action against pathogens. Cannabis extracts act in synergy with chemical fungicides, allowing to reduce its doses.
publishDate 2024
dc.date.none.fl_str_mv 2024-01-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/236549
Vozza Berardo, María Eugenia; Mendieta, Julieta Renee; Villamonte, María Daniela; Colman, Silvana Lorena; Nercessian, Debora; Antifungal and antibacterial activities of Cannabis sativa L. resins; Elsevier Ireland; Journal of Ethnopharmacology; 318; 10-1-2024; 1-10
0378-8741
CONICET Digital
CONICET
url http://hdl.handle.net/11336/236549
identifier_str_mv Vozza Berardo, María Eugenia; Mendieta, Julieta Renee; Villamonte, María Daniela; Colman, Silvana Lorena; Nercessian, Debora; Antifungal and antibacterial activities of Cannabis sativa L. resins; Elsevier Ireland; Journal of Ethnopharmacology; 318; 10-1-2024; 1-10
0378-8741
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0378874123007079
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jep.2023.116839
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Ireland
publisher.none.fl_str_mv Elsevier Ireland
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269724233170944
score 13.13397