A Quillen model structure of local homotopy equivalences
- Autores
- Mukherjee, Devarshi; Cortiñas, Guillermo Horacio
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this note, we construct a closed model structure on the category of Z/2Z-graded complexes of projective systems of ind-Banach spaces. When the base field is the fraction field F of a complete discrete valuation ring V, the homotopy category of this model category is the derived category of Z/2Z -graded complexes of the quasi-abelian category Ind(Ban_F). This homotopy category is the appropriate target of the local and analytic cyclic homology theories for complete, torsionfree V-algebras and F-algebras. When the base field is C, the homotopy category is the target of local and analytic cyclic homology for pro-bornological C-algebras, which includes the subcategory of pro-C*-algebras.
Fil: Mukherjee, Devarshi. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Cortiñas, Guillermo Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
MODEL CATEGORIES
CYCLIC HOMOLOGY
FUNCTIONAL ANALYSIS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/243999
Ver los metadatos del registro completo
id |
CONICETDig_2dda65ef10a77c0f555d5ff40ddeebd5 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/243999 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A Quillen model structure of local homotopy equivalencesMukherjee, DevarshiCortiñas, Guillermo HoracioMODEL CATEGORIESCYCLIC HOMOLOGYFUNCTIONAL ANALYSIShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this note, we construct a closed model structure on the category of Z/2Z-graded complexes of projective systems of ind-Banach spaces. When the base field is the fraction field F of a complete discrete valuation ring V, the homotopy category of this model category is the derived category of Z/2Z -graded complexes of the quasi-abelian category Ind(Ban_F). This homotopy category is the appropriate target of the local and analytic cyclic homology theories for complete, torsionfree V-algebras and F-algebras. When the base field is C, the homotopy category is the target of local and analytic cyclic homology for pro-bornological C-algebras, which includes the subcategory of pro-C*-algebras.Fil: Mukherjee, Devarshi. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Cortiñas, Guillermo Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaMount Allison University2024-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/243999Mukherjee, Devarshi; Cortiñas, Guillermo Horacio; A Quillen model structure of local homotopy equivalences; Mount Allison University; Theory And Applications Of Categories; 41; 9; 3-2024; 268-2871201-561XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.tac.mta.ca/tac/volumes/41/9/41-09abs.htmlinfo:eu-repo/semantics/altIdentifier/url/http://www.tac.mta.ca/tac/volumes/41/9/41-09.pdfinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2207.02979info:eu-repo/semantics/altIdentifier/doi/10.48550/arXiv.2207.02979info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:26:24Zoai:ri.conicet.gov.ar:11336/243999instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:26:24.342CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A Quillen model structure of local homotopy equivalences |
title |
A Quillen model structure of local homotopy equivalences |
spellingShingle |
A Quillen model structure of local homotopy equivalences Mukherjee, Devarshi MODEL CATEGORIES CYCLIC HOMOLOGY FUNCTIONAL ANALYSIS |
title_short |
A Quillen model structure of local homotopy equivalences |
title_full |
A Quillen model structure of local homotopy equivalences |
title_fullStr |
A Quillen model structure of local homotopy equivalences |
title_full_unstemmed |
A Quillen model structure of local homotopy equivalences |
title_sort |
A Quillen model structure of local homotopy equivalences |
dc.creator.none.fl_str_mv |
Mukherjee, Devarshi Cortiñas, Guillermo Horacio |
author |
Mukherjee, Devarshi |
author_facet |
Mukherjee, Devarshi Cortiñas, Guillermo Horacio |
author_role |
author |
author2 |
Cortiñas, Guillermo Horacio |
author2_role |
author |
dc.subject.none.fl_str_mv |
MODEL CATEGORIES CYCLIC HOMOLOGY FUNCTIONAL ANALYSIS |
topic |
MODEL CATEGORIES CYCLIC HOMOLOGY FUNCTIONAL ANALYSIS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this note, we construct a closed model structure on the category of Z/2Z-graded complexes of projective systems of ind-Banach spaces. When the base field is the fraction field F of a complete discrete valuation ring V, the homotopy category of this model category is the derived category of Z/2Z -graded complexes of the quasi-abelian category Ind(Ban_F). This homotopy category is the appropriate target of the local and analytic cyclic homology theories for complete, torsionfree V-algebras and F-algebras. When the base field is C, the homotopy category is the target of local and analytic cyclic homology for pro-bornological C-algebras, which includes the subcategory of pro-C*-algebras. Fil: Mukherjee, Devarshi. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Cortiñas, Guillermo Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
description |
In this note, we construct a closed model structure on the category of Z/2Z-graded complexes of projective systems of ind-Banach spaces. When the base field is the fraction field F of a complete discrete valuation ring V, the homotopy category of this model category is the derived category of Z/2Z -graded complexes of the quasi-abelian category Ind(Ban_F). This homotopy category is the appropriate target of the local and analytic cyclic homology theories for complete, torsionfree V-algebras and F-algebras. When the base field is C, the homotopy category is the target of local and analytic cyclic homology for pro-bornological C-algebras, which includes the subcategory of pro-C*-algebras. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/243999 Mukherjee, Devarshi; Cortiñas, Guillermo Horacio; A Quillen model structure of local homotopy equivalences; Mount Allison University; Theory And Applications Of Categories; 41; 9; 3-2024; 268-287 1201-561X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/243999 |
identifier_str_mv |
Mukherjee, Devarshi; Cortiñas, Guillermo Horacio; A Quillen model structure of local homotopy equivalences; Mount Allison University; Theory And Applications Of Categories; 41; 9; 3-2024; 268-287 1201-561X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.tac.mta.ca/tac/volumes/41/9/41-09abs.html info:eu-repo/semantics/altIdentifier/url/http://www.tac.mta.ca/tac/volumes/41/9/41-09.pdf info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2207.02979 info:eu-repo/semantics/altIdentifier/doi/10.48550/arXiv.2207.02979 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Mount Allison University |
publisher.none.fl_str_mv |
Mount Allison University |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082708936065024 |
score |
13.22299 |