Dental anomaly detection using intraoral photos via deep learning
- Autores
- Ragodos, Ronilo; Wang, Tong; Padilla, Carmencita; Hecht, Jacqueline T.; Poletta, Fernando Adrián; Orioli, Ieda Maria; Buxó, Carmen J.; Butali, Azeez; Valencia Ramirez, Consuelo; Restrepo Muñeton, Claudia; Wehby, George; Weinberg, Seth M.; Marazita, Mary L.; Moreno Uribe, Lina M.; Howe, Brian J.
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Children with orofacial clefting (OFC) present with a wide range of dental anomalies. Identifying these anomalies is vital to understand their etiology and to discern the complex phenotypic spectrum of OFC. Such anomalies are currently identified using intra-oral exams by dentists, a costly and time-consuming process. We claim that automating the process of anomaly detection using deep neural networks (DNNs) could increase efficiency and provide reliable anomaly detection while potentially increasing the speed of research discovery. This study characterizes the use of` DNNs to identify dental anomalies by training a DNN model using intraoral photographs from the largest international cohort to date of children with nonsyndromic OFC and controls (OFC1). In this project, the intraoral images were submitted to a Convolutional Neural Network model to perform multi-label multi-class classification of 10 dental anomalies. The network predicts whether an individual exhibits any of the 10 anomalies and can do so significantly faster than a human rater can. For all but three anomalies, F1 scores suggest that our model performs competitively at anomaly detection when compared to a dentist with 8 years of clinical experience. In addition, we use saliency maps to provide a post-hoc interpretation for our model’s predictions. This enables dentists to examine and verify our model’s predictions.
Fil: Ragodos, Ronilo. University of Iowa; Estados Unidos
Fil: Wang, Tong. University of Iowa; Estados Unidos
Fil: Padilla, Carmencita. University of the Philippines; Filipinas
Fil: Hecht, Jacqueline T.. University of Texas Health Science Center at Houston; Estados Unidos
Fil: Poletta, Fernando Adrián. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. CEMIC-CONICET. Centro de Educaciones Médicas e Investigaciones Clínicas "Norberto Quirno". CEMIC-CONICET; Argentina
Fil: Orioli, Ieda Maria. Universidade Federal do Rio de Janeiro; Brasil
Fil: Buxó, Carmen J.. Universidad de Puerto Rico; Puerto Rico
Fil: Butali, Azeez. University of Iowa; Estados Unidos
Fil: Valencia Ramirez, Consuelo. Fundación Clínica Noel; Colombia
Fil: Restrepo Muñeton, Claudia. Fundación Clínica Noel; Colombia
Fil: Wehby, George. University of Iowa; Estados Unidos
Fil: Weinberg, Seth M.. University of Pittsburgh; Estados Unidos. University of Pittsburgh at Johnstown; Estados Unidos
Fil: Marazita, Mary L.. University of Pittsburgh at Johnstown; Estados Unidos. University of Pittsburgh; Estados Unidos
Fil: Moreno Uribe, Lina M.. University of Iowa; Estados Unidos
Fil: Howe, Brian J.. University of Iowa; Estados Unidos - Materia
-
dental anomaly
oral cleft
deep learning - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/213801
Ver los metadatos del registro completo
id |
CONICETDig_2c1c9b1f69af910f0a0fc15c523e43d8 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/213801 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Dental anomaly detection using intraoral photos via deep learningRagodos, RoniloWang, TongPadilla, CarmencitaHecht, Jacqueline T.Poletta, Fernando AdriánOrioli, Ieda MariaBuxó, Carmen J.Butali, AzeezValencia Ramirez, ConsueloRestrepo Muñeton, ClaudiaWehby, GeorgeWeinberg, Seth M.Marazita, Mary L.Moreno Uribe, Lina M.Howe, Brian J.dental anomalyoral cleftdeep learninghttps://purl.org/becyt/ford/3.2https://purl.org/becyt/ford/3Children with orofacial clefting (OFC) present with a wide range of dental anomalies. Identifying these anomalies is vital to understand their etiology and to discern the complex phenotypic spectrum of OFC. Such anomalies are currently identified using intra-oral exams by dentists, a costly and time-consuming process. We claim that automating the process of anomaly detection using deep neural networks (DNNs) could increase efficiency and provide reliable anomaly detection while potentially increasing the speed of research discovery. This study characterizes the use of` DNNs to identify dental anomalies by training a DNN model using intraoral photographs from the largest international cohort to date of children with nonsyndromic OFC and controls (OFC1). In this project, the intraoral images were submitted to a Convolutional Neural Network model to perform multi-label multi-class classification of 10 dental anomalies. The network predicts whether an individual exhibits any of the 10 anomalies and can do so significantly faster than a human rater can. For all but three anomalies, F1 scores suggest that our model performs competitively at anomaly detection when compared to a dentist with 8 years of clinical experience. In addition, we use saliency maps to provide a post-hoc interpretation for our model’s predictions. This enables dentists to examine and verify our model’s predictions.Fil: Ragodos, Ronilo. University of Iowa; Estados UnidosFil: Wang, Tong. University of Iowa; Estados UnidosFil: Padilla, Carmencita. University of the Philippines; FilipinasFil: Hecht, Jacqueline T.. University of Texas Health Science Center at Houston; Estados UnidosFil: Poletta, Fernando Adrián. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. CEMIC-CONICET. Centro de Educaciones Médicas e Investigaciones Clínicas "Norberto Quirno". CEMIC-CONICET; ArgentinaFil: Orioli, Ieda Maria. Universidade Federal do Rio de Janeiro; BrasilFil: Buxó, Carmen J.. Universidad de Puerto Rico; Puerto RicoFil: Butali, Azeez. University of Iowa; Estados UnidosFil: Valencia Ramirez, Consuelo. Fundación Clínica Noel; ColombiaFil: Restrepo Muñeton, Claudia. Fundación Clínica Noel; ColombiaFil: Wehby, George. University of Iowa; Estados UnidosFil: Weinberg, Seth M.. University of Pittsburgh; Estados Unidos. University of Pittsburgh at Johnstown; Estados UnidosFil: Marazita, Mary L.. University of Pittsburgh at Johnstown; Estados Unidos. University of Pittsburgh; Estados UnidosFil: Moreno Uribe, Lina M.. University of Iowa; Estados UnidosFil: Howe, Brian J.. University of Iowa; Estados UnidosNature Research2022-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/213801Ragodos, Ronilo; Wang, Tong; Padilla, Carmencita; Hecht, Jacqueline T.; Poletta, Fernando Adrián; et al.; Dental anomaly detection using intraoral photos via deep learning; Nature Research; Scientific Reports; 12; 1; 12-2022; 1-82045-2322CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-022-15788-1info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41598-022-15788-1info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:33:05Zoai:ri.conicet.gov.ar:11336/213801instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:33:05.718CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Dental anomaly detection using intraoral photos via deep learning |
title |
Dental anomaly detection using intraoral photos via deep learning |
spellingShingle |
Dental anomaly detection using intraoral photos via deep learning Ragodos, Ronilo dental anomaly oral cleft deep learning |
title_short |
Dental anomaly detection using intraoral photos via deep learning |
title_full |
Dental anomaly detection using intraoral photos via deep learning |
title_fullStr |
Dental anomaly detection using intraoral photos via deep learning |
title_full_unstemmed |
Dental anomaly detection using intraoral photos via deep learning |
title_sort |
Dental anomaly detection using intraoral photos via deep learning |
dc.creator.none.fl_str_mv |
Ragodos, Ronilo Wang, Tong Padilla, Carmencita Hecht, Jacqueline T. Poletta, Fernando Adrián Orioli, Ieda Maria Buxó, Carmen J. Butali, Azeez Valencia Ramirez, Consuelo Restrepo Muñeton, Claudia Wehby, George Weinberg, Seth M. Marazita, Mary L. Moreno Uribe, Lina M. Howe, Brian J. |
author |
Ragodos, Ronilo |
author_facet |
Ragodos, Ronilo Wang, Tong Padilla, Carmencita Hecht, Jacqueline T. Poletta, Fernando Adrián Orioli, Ieda Maria Buxó, Carmen J. Butali, Azeez Valencia Ramirez, Consuelo Restrepo Muñeton, Claudia Wehby, George Weinberg, Seth M. Marazita, Mary L. Moreno Uribe, Lina M. Howe, Brian J. |
author_role |
author |
author2 |
Wang, Tong Padilla, Carmencita Hecht, Jacqueline T. Poletta, Fernando Adrián Orioli, Ieda Maria Buxó, Carmen J. Butali, Azeez Valencia Ramirez, Consuelo Restrepo Muñeton, Claudia Wehby, George Weinberg, Seth M. Marazita, Mary L. Moreno Uribe, Lina M. Howe, Brian J. |
author2_role |
author author author author author author author author author author author author author author |
dc.subject.none.fl_str_mv |
dental anomaly oral cleft deep learning |
topic |
dental anomaly oral cleft deep learning |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/3.2 https://purl.org/becyt/ford/3 |
dc.description.none.fl_txt_mv |
Children with orofacial clefting (OFC) present with a wide range of dental anomalies. Identifying these anomalies is vital to understand their etiology and to discern the complex phenotypic spectrum of OFC. Such anomalies are currently identified using intra-oral exams by dentists, a costly and time-consuming process. We claim that automating the process of anomaly detection using deep neural networks (DNNs) could increase efficiency and provide reliable anomaly detection while potentially increasing the speed of research discovery. This study characterizes the use of` DNNs to identify dental anomalies by training a DNN model using intraoral photographs from the largest international cohort to date of children with nonsyndromic OFC and controls (OFC1). In this project, the intraoral images were submitted to a Convolutional Neural Network model to perform multi-label multi-class classification of 10 dental anomalies. The network predicts whether an individual exhibits any of the 10 anomalies and can do so significantly faster than a human rater can. For all but three anomalies, F1 scores suggest that our model performs competitively at anomaly detection when compared to a dentist with 8 years of clinical experience. In addition, we use saliency maps to provide a post-hoc interpretation for our model’s predictions. This enables dentists to examine and verify our model’s predictions. Fil: Ragodos, Ronilo. University of Iowa; Estados Unidos Fil: Wang, Tong. University of Iowa; Estados Unidos Fil: Padilla, Carmencita. University of the Philippines; Filipinas Fil: Hecht, Jacqueline T.. University of Texas Health Science Center at Houston; Estados Unidos Fil: Poletta, Fernando Adrián. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. CEMIC-CONICET. Centro de Educaciones Médicas e Investigaciones Clínicas "Norberto Quirno". CEMIC-CONICET; Argentina Fil: Orioli, Ieda Maria. Universidade Federal do Rio de Janeiro; Brasil Fil: Buxó, Carmen J.. Universidad de Puerto Rico; Puerto Rico Fil: Butali, Azeez. University of Iowa; Estados Unidos Fil: Valencia Ramirez, Consuelo. Fundación Clínica Noel; Colombia Fil: Restrepo Muñeton, Claudia. Fundación Clínica Noel; Colombia Fil: Wehby, George. University of Iowa; Estados Unidos Fil: Weinberg, Seth M.. University of Pittsburgh; Estados Unidos. University of Pittsburgh at Johnstown; Estados Unidos Fil: Marazita, Mary L.. University of Pittsburgh at Johnstown; Estados Unidos. University of Pittsburgh; Estados Unidos Fil: Moreno Uribe, Lina M.. University of Iowa; Estados Unidos Fil: Howe, Brian J.. University of Iowa; Estados Unidos |
description |
Children with orofacial clefting (OFC) present with a wide range of dental anomalies. Identifying these anomalies is vital to understand their etiology and to discern the complex phenotypic spectrum of OFC. Such anomalies are currently identified using intra-oral exams by dentists, a costly and time-consuming process. We claim that automating the process of anomaly detection using deep neural networks (DNNs) could increase efficiency and provide reliable anomaly detection while potentially increasing the speed of research discovery. This study characterizes the use of` DNNs to identify dental anomalies by training a DNN model using intraoral photographs from the largest international cohort to date of children with nonsyndromic OFC and controls (OFC1). In this project, the intraoral images were submitted to a Convolutional Neural Network model to perform multi-label multi-class classification of 10 dental anomalies. The network predicts whether an individual exhibits any of the 10 anomalies and can do so significantly faster than a human rater can. For all but three anomalies, F1 scores suggest that our model performs competitively at anomaly detection when compared to a dentist with 8 years of clinical experience. In addition, we use saliency maps to provide a post-hoc interpretation for our model’s predictions. This enables dentists to examine and verify our model’s predictions. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/213801 Ragodos, Ronilo; Wang, Tong; Padilla, Carmencita; Hecht, Jacqueline T.; Poletta, Fernando Adrián; et al.; Dental anomaly detection using intraoral photos via deep learning; Nature Research; Scientific Reports; 12; 1; 12-2022; 1-8 2045-2322 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/213801 |
identifier_str_mv |
Ragodos, Ronilo; Wang, Tong; Padilla, Carmencita; Hecht, Jacqueline T.; Poletta, Fernando Adrián; et al.; Dental anomaly detection using intraoral photos via deep learning; Nature Research; Scientific Reports; 12; 1; 12-2022; 1-8 2045-2322 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-022-15788-1 info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41598-022-15788-1 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Nature Research |
publisher.none.fl_str_mv |
Nature Research |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614345575628800 |
score |
13.070432 |