Dental anomaly detection using intraoral photos via deep learning

Autores
Ragodos, Ronilo; Wang, Tong; Padilla, Carmencita; Hecht, Jacqueline T.; Poletta, Fernando Adrián; Orioli, Ieda Maria; Buxó, Carmen J.; Butali, Azeez; Valencia Ramirez, Consuelo; Restrepo Muñeton, Claudia; Wehby, George; Weinberg, Seth M.; Marazita, Mary L.; Moreno Uribe, Lina M.; Howe, Brian J.
Año de publicación
2022
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Children with orofacial clefting (OFC) present with a wide range of dental anomalies. Identifying these anomalies is vital to understand their etiology and to discern the complex phenotypic spectrum of OFC. Such anomalies are currently identified using intra-oral exams by dentists, a costly and time-consuming process. We claim that automating the process of anomaly detection using deep neural networks (DNNs) could increase efficiency and provide reliable anomaly detection while potentially increasing the speed of research discovery. This study characterizes the use of` DNNs to identify dental anomalies by training a DNN model using intraoral photographs from the largest international cohort to date of children with nonsyndromic OFC and controls (OFC1). In this project, the intraoral images were submitted to a Convolutional Neural Network model to perform multi-label multi-class classification of 10 dental anomalies. The network predicts whether an individual exhibits any of the 10 anomalies and can do so significantly faster than a human rater can. For all but three anomalies, F1 scores suggest that our model performs competitively at anomaly detection when compared to a dentist with 8 years of clinical experience. In addition, we use saliency maps to provide a post-hoc interpretation for our model’s predictions. This enables dentists to examine and verify our model’s predictions.
Fil: Ragodos, Ronilo. University of Iowa; Estados Unidos
Fil: Wang, Tong. University of Iowa; Estados Unidos
Fil: Padilla, Carmencita. University of the Philippines; Filipinas
Fil: Hecht, Jacqueline T.. University of Texas Health Science Center at Houston; Estados Unidos
Fil: Poletta, Fernando Adrián. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. CEMIC-CONICET. Centro de Educaciones Médicas e Investigaciones Clínicas "Norberto Quirno". CEMIC-CONICET; Argentina
Fil: Orioli, Ieda Maria. Universidade Federal do Rio de Janeiro; Brasil
Fil: Buxó, Carmen J.. Universidad de Puerto Rico; Puerto Rico
Fil: Butali, Azeez. University of Iowa; Estados Unidos
Fil: Valencia Ramirez, Consuelo. Fundación Clínica Noel; Colombia
Fil: Restrepo Muñeton, Claudia. Fundación Clínica Noel; Colombia
Fil: Wehby, George. University of Iowa; Estados Unidos
Fil: Weinberg, Seth M.. University of Pittsburgh; Estados Unidos. University of Pittsburgh at Johnstown; Estados Unidos
Fil: Marazita, Mary L.. University of Pittsburgh at Johnstown; Estados Unidos. University of Pittsburgh; Estados Unidos
Fil: Moreno Uribe, Lina M.. University of Iowa; Estados Unidos
Fil: Howe, Brian J.. University of Iowa; Estados Unidos
Materia
dental anomaly
oral cleft
deep learning
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/213801

id CONICETDig_2c1c9b1f69af910f0a0fc15c523e43d8
oai_identifier_str oai:ri.conicet.gov.ar:11336/213801
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Dental anomaly detection using intraoral photos via deep learningRagodos, RoniloWang, TongPadilla, CarmencitaHecht, Jacqueline T.Poletta, Fernando AdriánOrioli, Ieda MariaBuxó, Carmen J.Butali, AzeezValencia Ramirez, ConsueloRestrepo Muñeton, ClaudiaWehby, GeorgeWeinberg, Seth M.Marazita, Mary L.Moreno Uribe, Lina M.Howe, Brian J.dental anomalyoral cleftdeep learninghttps://purl.org/becyt/ford/3.2https://purl.org/becyt/ford/3Children with orofacial clefting (OFC) present with a wide range of dental anomalies. Identifying these anomalies is vital to understand their etiology and to discern the complex phenotypic spectrum of OFC. Such anomalies are currently identified using intra-oral exams by dentists, a costly and time-consuming process. We claim that automating the process of anomaly detection using deep neural networks (DNNs) could increase efficiency and provide reliable anomaly detection while potentially increasing the speed of research discovery. This study characterizes the use of` DNNs to identify dental anomalies by training a DNN model using intraoral photographs from the largest international cohort to date of children with nonsyndromic OFC and controls (OFC1). In this project, the intraoral images were submitted to a Convolutional Neural Network model to perform multi-label multi-class classification of 10 dental anomalies. The network predicts whether an individual exhibits any of the 10 anomalies and can do so significantly faster than a human rater can. For all but three anomalies, F1 scores suggest that our model performs competitively at anomaly detection when compared to a dentist with 8 years of clinical experience. In addition, we use saliency maps to provide a post-hoc interpretation for our model’s predictions. This enables dentists to examine and verify our model’s predictions.Fil: Ragodos, Ronilo. University of Iowa; Estados UnidosFil: Wang, Tong. University of Iowa; Estados UnidosFil: Padilla, Carmencita. University of the Philippines; FilipinasFil: Hecht, Jacqueline T.. University of Texas Health Science Center at Houston; Estados UnidosFil: Poletta, Fernando Adrián. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. CEMIC-CONICET. Centro de Educaciones Médicas e Investigaciones Clínicas "Norberto Quirno". CEMIC-CONICET; ArgentinaFil: Orioli, Ieda Maria. Universidade Federal do Rio de Janeiro; BrasilFil: Buxó, Carmen J.. Universidad de Puerto Rico; Puerto RicoFil: Butali, Azeez. University of Iowa; Estados UnidosFil: Valencia Ramirez, Consuelo. Fundación Clínica Noel; ColombiaFil: Restrepo Muñeton, Claudia. Fundación Clínica Noel; ColombiaFil: Wehby, George. University of Iowa; Estados UnidosFil: Weinberg, Seth M.. University of Pittsburgh; Estados Unidos. University of Pittsburgh at Johnstown; Estados UnidosFil: Marazita, Mary L.. University of Pittsburgh at Johnstown; Estados Unidos. University of Pittsburgh; Estados UnidosFil: Moreno Uribe, Lina M.. University of Iowa; Estados UnidosFil: Howe, Brian J.. University of Iowa; Estados UnidosNature Research2022-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/213801Ragodos, Ronilo; Wang, Tong; Padilla, Carmencita; Hecht, Jacqueline T.; Poletta, Fernando Adrián; et al.; Dental anomaly detection using intraoral photos via deep learning; Nature Research; Scientific Reports; 12; 1; 12-2022; 1-82045-2322CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-022-15788-1info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41598-022-15788-1info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:33:05Zoai:ri.conicet.gov.ar:11336/213801instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:33:05.718CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Dental anomaly detection using intraoral photos via deep learning
title Dental anomaly detection using intraoral photos via deep learning
spellingShingle Dental anomaly detection using intraoral photos via deep learning
Ragodos, Ronilo
dental anomaly
oral cleft
deep learning
title_short Dental anomaly detection using intraoral photos via deep learning
title_full Dental anomaly detection using intraoral photos via deep learning
title_fullStr Dental anomaly detection using intraoral photos via deep learning
title_full_unstemmed Dental anomaly detection using intraoral photos via deep learning
title_sort Dental anomaly detection using intraoral photos via deep learning
dc.creator.none.fl_str_mv Ragodos, Ronilo
Wang, Tong
Padilla, Carmencita
Hecht, Jacqueline T.
Poletta, Fernando Adrián
Orioli, Ieda Maria
Buxó, Carmen J.
Butali, Azeez
Valencia Ramirez, Consuelo
Restrepo Muñeton, Claudia
Wehby, George
Weinberg, Seth M.
Marazita, Mary L.
Moreno Uribe, Lina M.
Howe, Brian J.
author Ragodos, Ronilo
author_facet Ragodos, Ronilo
Wang, Tong
Padilla, Carmencita
Hecht, Jacqueline T.
Poletta, Fernando Adrián
Orioli, Ieda Maria
Buxó, Carmen J.
Butali, Azeez
Valencia Ramirez, Consuelo
Restrepo Muñeton, Claudia
Wehby, George
Weinberg, Seth M.
Marazita, Mary L.
Moreno Uribe, Lina M.
Howe, Brian J.
author_role author
author2 Wang, Tong
Padilla, Carmencita
Hecht, Jacqueline T.
Poletta, Fernando Adrián
Orioli, Ieda Maria
Buxó, Carmen J.
Butali, Azeez
Valencia Ramirez, Consuelo
Restrepo Muñeton, Claudia
Wehby, George
Weinberg, Seth M.
Marazita, Mary L.
Moreno Uribe, Lina M.
Howe, Brian J.
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv dental anomaly
oral cleft
deep learning
topic dental anomaly
oral cleft
deep learning
purl_subject.fl_str_mv https://purl.org/becyt/ford/3.2
https://purl.org/becyt/ford/3
dc.description.none.fl_txt_mv Children with orofacial clefting (OFC) present with a wide range of dental anomalies. Identifying these anomalies is vital to understand their etiology and to discern the complex phenotypic spectrum of OFC. Such anomalies are currently identified using intra-oral exams by dentists, a costly and time-consuming process. We claim that automating the process of anomaly detection using deep neural networks (DNNs) could increase efficiency and provide reliable anomaly detection while potentially increasing the speed of research discovery. This study characterizes the use of` DNNs to identify dental anomalies by training a DNN model using intraoral photographs from the largest international cohort to date of children with nonsyndromic OFC and controls (OFC1). In this project, the intraoral images were submitted to a Convolutional Neural Network model to perform multi-label multi-class classification of 10 dental anomalies. The network predicts whether an individual exhibits any of the 10 anomalies and can do so significantly faster than a human rater can. For all but three anomalies, F1 scores suggest that our model performs competitively at anomaly detection when compared to a dentist with 8 years of clinical experience. In addition, we use saliency maps to provide a post-hoc interpretation for our model’s predictions. This enables dentists to examine and verify our model’s predictions.
Fil: Ragodos, Ronilo. University of Iowa; Estados Unidos
Fil: Wang, Tong. University of Iowa; Estados Unidos
Fil: Padilla, Carmencita. University of the Philippines; Filipinas
Fil: Hecht, Jacqueline T.. University of Texas Health Science Center at Houston; Estados Unidos
Fil: Poletta, Fernando Adrián. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. CEMIC-CONICET. Centro de Educaciones Médicas e Investigaciones Clínicas "Norberto Quirno". CEMIC-CONICET; Argentina
Fil: Orioli, Ieda Maria. Universidade Federal do Rio de Janeiro; Brasil
Fil: Buxó, Carmen J.. Universidad de Puerto Rico; Puerto Rico
Fil: Butali, Azeez. University of Iowa; Estados Unidos
Fil: Valencia Ramirez, Consuelo. Fundación Clínica Noel; Colombia
Fil: Restrepo Muñeton, Claudia. Fundación Clínica Noel; Colombia
Fil: Wehby, George. University of Iowa; Estados Unidos
Fil: Weinberg, Seth M.. University of Pittsburgh; Estados Unidos. University of Pittsburgh at Johnstown; Estados Unidos
Fil: Marazita, Mary L.. University of Pittsburgh at Johnstown; Estados Unidos. University of Pittsburgh; Estados Unidos
Fil: Moreno Uribe, Lina M.. University of Iowa; Estados Unidos
Fil: Howe, Brian J.. University of Iowa; Estados Unidos
description Children with orofacial clefting (OFC) present with a wide range of dental anomalies. Identifying these anomalies is vital to understand their etiology and to discern the complex phenotypic spectrum of OFC. Such anomalies are currently identified using intra-oral exams by dentists, a costly and time-consuming process. We claim that automating the process of anomaly detection using deep neural networks (DNNs) could increase efficiency and provide reliable anomaly detection while potentially increasing the speed of research discovery. This study characterizes the use of` DNNs to identify dental anomalies by training a DNN model using intraoral photographs from the largest international cohort to date of children with nonsyndromic OFC and controls (OFC1). In this project, the intraoral images were submitted to a Convolutional Neural Network model to perform multi-label multi-class classification of 10 dental anomalies. The network predicts whether an individual exhibits any of the 10 anomalies and can do so significantly faster than a human rater can. For all but three anomalies, F1 scores suggest that our model performs competitively at anomaly detection when compared to a dentist with 8 years of clinical experience. In addition, we use saliency maps to provide a post-hoc interpretation for our model’s predictions. This enables dentists to examine and verify our model’s predictions.
publishDate 2022
dc.date.none.fl_str_mv 2022-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/213801
Ragodos, Ronilo; Wang, Tong; Padilla, Carmencita; Hecht, Jacqueline T.; Poletta, Fernando Adrián; et al.; Dental anomaly detection using intraoral photos via deep learning; Nature Research; Scientific Reports; 12; 1; 12-2022; 1-8
2045-2322
CONICET Digital
CONICET
url http://hdl.handle.net/11336/213801
identifier_str_mv Ragodos, Ronilo; Wang, Tong; Padilla, Carmencita; Hecht, Jacqueline T.; Poletta, Fernando Adrián; et al.; Dental anomaly detection using intraoral photos via deep learning; Nature Research; Scientific Reports; 12; 1; 12-2022; 1-8
2045-2322
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-022-15788-1
info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41598-022-15788-1
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Nature Research
publisher.none.fl_str_mv Nature Research
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614345575628800
score 13.070432