Algorithmic identification of probabilities is hard
- Autores
- Bienvenu, Laurent; Figueira, Santiago; Monin, Benoit; Shen, Alexander
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Reading more and more bits from an infinite binary sequence that is random for a Bernoulli measure with parameter p, we can get better and better approximations of p using the strong law of large numbers. In this paper, we study a similar situation from the viewpoint of inductive inference. Assume that p is a computable real, and we have to eventually guess the program that computes p. We show that this cannot be done computably, and extend this result to more general computable distributions. We also provide a weak positive result showing that looking at a sequence X generated according to some computable probability measure, we can guess a sequence of algorithms that, starting from some point, compute a measure that makes X Martin-Löf random.
Fil: Bienvenu, Laurent. Centre National de la Recherche Scientifique; Francia
Fil: Figueira, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación En Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación En Ciencias de la Computacion; Argentina
Fil: Monin, Benoit. Université Paris-Est Créteil; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Shen, Alexander. Centre National de la Recherche Scientifique; Francia - Materia
-
ALGORITHMIC LEARNING THEORY
ALGORITHMIC RANDOMNESS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/98229
Ver los metadatos del registro completo
id |
CONICETDig_2b16bd0b42d4d40e1efef40df688f7f7 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/98229 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Algorithmic identification of probabilities is hardBienvenu, LaurentFigueira, SantiagoMonin, BenoitShen, AlexanderALGORITHMIC LEARNING THEORYALGORITHMIC RANDOMNESShttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Reading more and more bits from an infinite binary sequence that is random for a Bernoulli measure with parameter p, we can get better and better approximations of p using the strong law of large numbers. In this paper, we study a similar situation from the viewpoint of inductive inference. Assume that p is a computable real, and we have to eventually guess the program that computes p. We show that this cannot be done computably, and extend this result to more general computable distributions. We also provide a weak positive result showing that looking at a sequence X generated according to some computable probability measure, we can guess a sequence of algorithms that, starting from some point, compute a measure that makes X Martin-Löf random.Fil: Bienvenu, Laurent. Centre National de la Recherche Scientifique; FranciaFil: Figueira, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación En Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación En Ciencias de la Computacion; ArgentinaFil: Monin, Benoit. Université Paris-Est Créteil; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Shen, Alexander. Centre National de la Recherche Scientifique; FranciaAcademic Press Inc Elsevier Science2018-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/98229Bienvenu, Laurent; Figueira, Santiago; Monin, Benoit; Shen, Alexander; Algorithmic identification of probabilities is hard; Academic Press Inc Elsevier Science; Journal of Computer and System Sciences; 95; 8-2018; 98-1080022-0000CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022000018301193info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jcss.2018.01.002info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:49:35Zoai:ri.conicet.gov.ar:11336/98229instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:49:36.045CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Algorithmic identification of probabilities is hard |
title |
Algorithmic identification of probabilities is hard |
spellingShingle |
Algorithmic identification of probabilities is hard Bienvenu, Laurent ALGORITHMIC LEARNING THEORY ALGORITHMIC RANDOMNESS |
title_short |
Algorithmic identification of probabilities is hard |
title_full |
Algorithmic identification of probabilities is hard |
title_fullStr |
Algorithmic identification of probabilities is hard |
title_full_unstemmed |
Algorithmic identification of probabilities is hard |
title_sort |
Algorithmic identification of probabilities is hard |
dc.creator.none.fl_str_mv |
Bienvenu, Laurent Figueira, Santiago Monin, Benoit Shen, Alexander |
author |
Bienvenu, Laurent |
author_facet |
Bienvenu, Laurent Figueira, Santiago Monin, Benoit Shen, Alexander |
author_role |
author |
author2 |
Figueira, Santiago Monin, Benoit Shen, Alexander |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
ALGORITHMIC LEARNING THEORY ALGORITHMIC RANDOMNESS |
topic |
ALGORITHMIC LEARNING THEORY ALGORITHMIC RANDOMNESS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Reading more and more bits from an infinite binary sequence that is random for a Bernoulli measure with parameter p, we can get better and better approximations of p using the strong law of large numbers. In this paper, we study a similar situation from the viewpoint of inductive inference. Assume that p is a computable real, and we have to eventually guess the program that computes p. We show that this cannot be done computably, and extend this result to more general computable distributions. We also provide a weak positive result showing that looking at a sequence X generated according to some computable probability measure, we can guess a sequence of algorithms that, starting from some point, compute a measure that makes X Martin-Löf random. Fil: Bienvenu, Laurent. Centre National de la Recherche Scientifique; Francia Fil: Figueira, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación En Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación En Ciencias de la Computacion; Argentina Fil: Monin, Benoit. Université Paris-Est Créteil; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Shen, Alexander. Centre National de la Recherche Scientifique; Francia |
description |
Reading more and more bits from an infinite binary sequence that is random for a Bernoulli measure with parameter p, we can get better and better approximations of p using the strong law of large numbers. In this paper, we study a similar situation from the viewpoint of inductive inference. Assume that p is a computable real, and we have to eventually guess the program that computes p. We show that this cannot be done computably, and extend this result to more general computable distributions. We also provide a weak positive result showing that looking at a sequence X generated according to some computable probability measure, we can guess a sequence of algorithms that, starting from some point, compute a measure that makes X Martin-Löf random. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/98229 Bienvenu, Laurent; Figueira, Santiago; Monin, Benoit; Shen, Alexander; Algorithmic identification of probabilities is hard; Academic Press Inc Elsevier Science; Journal of Computer and System Sciences; 95; 8-2018; 98-108 0022-0000 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/98229 |
identifier_str_mv |
Bienvenu, Laurent; Figueira, Santiago; Monin, Benoit; Shen, Alexander; Algorithmic identification of probabilities is hard; Academic Press Inc Elsevier Science; Journal of Computer and System Sciences; 95; 8-2018; 98-108 0022-0000 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022000018301193 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jcss.2018.01.002 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268982065758208 |
score |
13.13397 |