Randomness and universal machines
- Autores
- Figueira, S.; Stephan, F.; Wu, G.
- Año de publicación
- 2006
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The present work investigates several questions from a recent survey of Miller and Nies related to Chaitin's Ω numbers and their dependence on the underlying universal machine. Furthermore, the notion ΩU [X] = ∑p : U (p) ↓ ∈ X 2- | p | is studied for various sets X and universal machines U. A universal machine U is constructed such that for all x, ΩU [{ x }] = 21 - H (x). For such a universal machine there exists a co-r.e. set X such that ΩU [X] is neither left-r.e. nor Martin-Löf random. Furthermore, one of the open problems of Miller and Nies is answered completely by showing that there is a sequence Un of universal machines such that the truth-table degrees of the ΩUn form an antichain. Finally, it is shown that the members of hyperimmune-free Turing degree of a given Π1 0-class are not low for Ω unless this class contains a recursive set. © 2006 Elsevier Inc. All rights reserved.
Fil:Figueira, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- J. Complexity 2006;22(6):738-751
- Materia
-
Algorithmic randomness
Halting probability
Kolmogorov complexity
Recursion theory
Truth-table degrees
Universal machines
Ω-numbers
Algorithms
Turing machines
Algorithmic randomness
Halting probability
Kolmogorov complexity
Recursion theory
Truth-table degrees
Universal machines
Ω-numbers
Random number generation - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_0885064X_v22_n6_p738_Figueira
Ver los metadatos del registro completo
id |
BDUBAFCEN_0f83c0a16509e08d017da4dabfb0f5d5 |
---|---|
oai_identifier_str |
paperaa:paper_0885064X_v22_n6_p738_Figueira |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
Randomness and universal machinesFigueira, S.Stephan, F.Wu, G.Algorithmic randomnessHalting probabilityKolmogorov complexityRecursion theoryTruth-table degreesUniversal machinesΩ-numbersAlgorithmsTuring machinesAlgorithmic randomnessHalting probabilityKolmogorov complexityRecursion theoryTruth-table degreesUniversal machinesΩ-numbersRandom number generationThe present work investigates several questions from a recent survey of Miller and Nies related to Chaitin's Ω numbers and their dependence on the underlying universal machine. Furthermore, the notion ΩU [X] = ∑p : U (p) ↓ ∈ X 2- | p | is studied for various sets X and universal machines U. A universal machine U is constructed such that for all x, ΩU [{ x }] = 21 - H (x). For such a universal machine there exists a co-r.e. set X such that ΩU [X] is neither left-r.e. nor Martin-Löf random. Furthermore, one of the open problems of Miller and Nies is answered completely by showing that there is a sequence Un of universal machines such that the truth-table degrees of the ΩUn form an antichain. Finally, it is shown that the members of hyperimmune-free Turing degree of a given Π1 0-class are not low for Ω unless this class contains a recursive set. © 2006 Elsevier Inc. All rights reserved.Fil:Figueira, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2006info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_0885064X_v22_n6_p738_FigueiraJ. Complexity 2006;22(6):738-751reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-04T09:48:38Zpaperaa:paper_0885064X_v22_n6_p738_FigueiraInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-04 09:48:39.765Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
Randomness and universal machines |
title |
Randomness and universal machines |
spellingShingle |
Randomness and universal machines Figueira, S. Algorithmic randomness Halting probability Kolmogorov complexity Recursion theory Truth-table degrees Universal machines Ω-numbers Algorithms Turing machines Algorithmic randomness Halting probability Kolmogorov complexity Recursion theory Truth-table degrees Universal machines Ω-numbers Random number generation |
title_short |
Randomness and universal machines |
title_full |
Randomness and universal machines |
title_fullStr |
Randomness and universal machines |
title_full_unstemmed |
Randomness and universal machines |
title_sort |
Randomness and universal machines |
dc.creator.none.fl_str_mv |
Figueira, S. Stephan, F. Wu, G. |
author |
Figueira, S. |
author_facet |
Figueira, S. Stephan, F. Wu, G. |
author_role |
author |
author2 |
Stephan, F. Wu, G. |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Algorithmic randomness Halting probability Kolmogorov complexity Recursion theory Truth-table degrees Universal machines Ω-numbers Algorithms Turing machines Algorithmic randomness Halting probability Kolmogorov complexity Recursion theory Truth-table degrees Universal machines Ω-numbers Random number generation |
topic |
Algorithmic randomness Halting probability Kolmogorov complexity Recursion theory Truth-table degrees Universal machines Ω-numbers Algorithms Turing machines Algorithmic randomness Halting probability Kolmogorov complexity Recursion theory Truth-table degrees Universal machines Ω-numbers Random number generation |
dc.description.none.fl_txt_mv |
The present work investigates several questions from a recent survey of Miller and Nies related to Chaitin's Ω numbers and their dependence on the underlying universal machine. Furthermore, the notion ΩU [X] = ∑p : U (p) ↓ ∈ X 2- | p | is studied for various sets X and universal machines U. A universal machine U is constructed such that for all x, ΩU [{ x }] = 21 - H (x). For such a universal machine there exists a co-r.e. set X such that ΩU [X] is neither left-r.e. nor Martin-Löf random. Furthermore, one of the open problems of Miller and Nies is answered completely by showing that there is a sequence Un of universal machines such that the truth-table degrees of the ΩUn form an antichain. Finally, it is shown that the members of hyperimmune-free Turing degree of a given Π1 0-class are not low for Ω unless this class contains a recursive set. © 2006 Elsevier Inc. All rights reserved. Fil:Figueira, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
The present work investigates several questions from a recent survey of Miller and Nies related to Chaitin's Ω numbers and their dependence on the underlying universal machine. Furthermore, the notion ΩU [X] = ∑p : U (p) ↓ ∈ X 2- | p | is studied for various sets X and universal machines U. A universal machine U is constructed such that for all x, ΩU [{ x }] = 21 - H (x). For such a universal machine there exists a co-r.e. set X such that ΩU [X] is neither left-r.e. nor Martin-Löf random. Furthermore, one of the open problems of Miller and Nies is answered completely by showing that there is a sequence Un of universal machines such that the truth-table degrees of the ΩUn form an antichain. Finally, it is shown that the members of hyperimmune-free Turing degree of a given Π1 0-class are not low for Ω unless this class contains a recursive set. © 2006 Elsevier Inc. All rights reserved. |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_0885064X_v22_n6_p738_Figueira |
url |
http://hdl.handle.net/20.500.12110/paper_0885064X_v22_n6_p738_Figueira |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
J. Complexity 2006;22(6):738-751 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1842340705666596864 |
score |
12.623145 |