Randomness and universal machines

Autores
Figueira, S.; Stephan, F.; Wu, G.
Año de publicación
2006
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The present work investigates several questions from a recent survey of Miller and Nies related to Chaitin's Ω numbers and their dependence on the underlying universal machine. Furthermore, the notion ΩU [X] = ∑p : U (p) ↓ ∈ X 2- | p | is studied for various sets X and universal machines U. A universal machine U is constructed such that for all x, ΩU [{ x }] = 21 - H (x). For such a universal machine there exists a co-r.e. set X such that ΩU [X] is neither left-r.e. nor Martin-Löf random. Furthermore, one of the open problems of Miller and Nies is answered completely by showing that there is a sequence Un of universal machines such that the truth-table degrees of the ΩUn form an antichain. Finally, it is shown that the members of hyperimmune-free Turing degree of a given Π1 0-class are not low for Ω unless this class contains a recursive set. © 2006 Elsevier Inc. All rights reserved.
Fil:Figueira, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
J. Complexity 2006;22(6):738-751
Materia
Algorithmic randomness
Halting probability
Kolmogorov complexity
Recursion theory
Truth-table degrees
Universal machines
Ω-numbers
Algorithms
Turing machines
Algorithmic randomness
Halting probability
Kolmogorov complexity
Recursion theory
Truth-table degrees
Universal machines
Ω-numbers
Random number generation
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_0885064X_v22_n6_p738_Figueira

id BDUBAFCEN_0f83c0a16509e08d017da4dabfb0f5d5
oai_identifier_str paperaa:paper_0885064X_v22_n6_p738_Figueira
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Randomness and universal machinesFigueira, S.Stephan, F.Wu, G.Algorithmic randomnessHalting probabilityKolmogorov complexityRecursion theoryTruth-table degreesUniversal machinesΩ-numbersAlgorithmsTuring machinesAlgorithmic randomnessHalting probabilityKolmogorov complexityRecursion theoryTruth-table degreesUniversal machinesΩ-numbersRandom number generationThe present work investigates several questions from a recent survey of Miller and Nies related to Chaitin's Ω numbers and their dependence on the underlying universal machine. Furthermore, the notion ΩU [X] = ∑p : U (p) ↓ ∈ X 2- | p | is studied for various sets X and universal machines U. A universal machine U is constructed such that for all x, ΩU [{ x }] = 21 - H (x). For such a universal machine there exists a co-r.e. set X such that ΩU [X] is neither left-r.e. nor Martin-Löf random. Furthermore, one of the open problems of Miller and Nies is answered completely by showing that there is a sequence Un of universal machines such that the truth-table degrees of the ΩUn form an antichain. Finally, it is shown that the members of hyperimmune-free Turing degree of a given Π1 0-class are not low for Ω unless this class contains a recursive set. © 2006 Elsevier Inc. All rights reserved.Fil:Figueira, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2006info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_0885064X_v22_n6_p738_FigueiraJ. Complexity 2006;22(6):738-751reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-04T09:48:38Zpaperaa:paper_0885064X_v22_n6_p738_FigueiraInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-04 09:48:39.765Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Randomness and universal machines
title Randomness and universal machines
spellingShingle Randomness and universal machines
Figueira, S.
Algorithmic randomness
Halting probability
Kolmogorov complexity
Recursion theory
Truth-table degrees
Universal machines
Ω-numbers
Algorithms
Turing machines
Algorithmic randomness
Halting probability
Kolmogorov complexity
Recursion theory
Truth-table degrees
Universal machines
Ω-numbers
Random number generation
title_short Randomness and universal machines
title_full Randomness and universal machines
title_fullStr Randomness and universal machines
title_full_unstemmed Randomness and universal machines
title_sort Randomness and universal machines
dc.creator.none.fl_str_mv Figueira, S.
Stephan, F.
Wu, G.
author Figueira, S.
author_facet Figueira, S.
Stephan, F.
Wu, G.
author_role author
author2 Stephan, F.
Wu, G.
author2_role author
author
dc.subject.none.fl_str_mv Algorithmic randomness
Halting probability
Kolmogorov complexity
Recursion theory
Truth-table degrees
Universal machines
Ω-numbers
Algorithms
Turing machines
Algorithmic randomness
Halting probability
Kolmogorov complexity
Recursion theory
Truth-table degrees
Universal machines
Ω-numbers
Random number generation
topic Algorithmic randomness
Halting probability
Kolmogorov complexity
Recursion theory
Truth-table degrees
Universal machines
Ω-numbers
Algorithms
Turing machines
Algorithmic randomness
Halting probability
Kolmogorov complexity
Recursion theory
Truth-table degrees
Universal machines
Ω-numbers
Random number generation
dc.description.none.fl_txt_mv The present work investigates several questions from a recent survey of Miller and Nies related to Chaitin's Ω numbers and their dependence on the underlying universal machine. Furthermore, the notion ΩU [X] = ∑p : U (p) ↓ ∈ X 2- | p | is studied for various sets X and universal machines U. A universal machine U is constructed such that for all x, ΩU [{ x }] = 21 - H (x). For such a universal machine there exists a co-r.e. set X such that ΩU [X] is neither left-r.e. nor Martin-Löf random. Furthermore, one of the open problems of Miller and Nies is answered completely by showing that there is a sequence Un of universal machines such that the truth-table degrees of the ΩUn form an antichain. Finally, it is shown that the members of hyperimmune-free Turing degree of a given Π1 0-class are not low for Ω unless this class contains a recursive set. © 2006 Elsevier Inc. All rights reserved.
Fil:Figueira, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description The present work investigates several questions from a recent survey of Miller and Nies related to Chaitin's Ω numbers and their dependence on the underlying universal machine. Furthermore, the notion ΩU [X] = ∑p : U (p) ↓ ∈ X 2- | p | is studied for various sets X and universal machines U. A universal machine U is constructed such that for all x, ΩU [{ x }] = 21 - H (x). For such a universal machine there exists a co-r.e. set X such that ΩU [X] is neither left-r.e. nor Martin-Löf random. Furthermore, one of the open problems of Miller and Nies is answered completely by showing that there is a sequence Un of universal machines such that the truth-table degrees of the ΩUn form an antichain. Finally, it is shown that the members of hyperimmune-free Turing degree of a given Π1 0-class are not low for Ω unless this class contains a recursive set. © 2006 Elsevier Inc. All rights reserved.
publishDate 2006
dc.date.none.fl_str_mv 2006
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_0885064X_v22_n6_p738_Figueira
url http://hdl.handle.net/20.500.12110/paper_0885064X_v22_n6_p738_Figueira
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv J. Complexity 2006;22(6):738-751
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1842340705666596864
score 12.623145