Normality in non-integer bases and polynomial time randomness

Autores
Almarza, Javier Ignacio; Figueira, Santiago
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
It is known that if x ∈ [0, 1] is polynomial time random (i.e. no polynomial time computable martingale succeeds on the binary fractional expansion of x) then x is normal in any integer base greater than one. We show that if x is polynomial time random and β > 1 is Pisot, then x is “normal in base β”, in the sense that the sequence (xβn)n∈N is uniformly distributed modulo one. We work with the notion of P-martingale, a generalization of martingales to non-uniform distributions, and show that a sequence over a finite alphabet is distributed according to an irreducible, invariant Markov measure P if an only if no P-martingale whose betting factors are computed by a deterministic finite automaton succeeds on it. This is a generalization of Schnorr and Stimm’s characterization of normal sequences in integer bases. Our results use tools and techniques from symbolic dynamics, together with automata theory and algorithmic randomness.
Fil: Almarza, Javier Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Figueira, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina
Materia
Algorithmic Randomness
Deterministic Finite Automaton
Subshift
Pisot Number
Normality
Polynomial Randomness
Martingale
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/43163

id CONICETDig_ef1d65dbe2bdc6650481ba4421692a35
oai_identifier_str oai:ri.conicet.gov.ar:11336/43163
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Normality in non-integer bases and polynomial time randomnessAlmarza, Javier IgnacioFigueira, SantiagoAlgorithmic RandomnessDeterministic Finite AutomatonSubshiftPisot NumberNormalityPolynomial RandomnessMartingalehttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1It is known that if x ∈ [0, 1] is polynomial time random (i.e. no polynomial time computable martingale succeeds on the binary fractional expansion of x) then x is normal in any integer base greater than one. We show that if x is polynomial time random and β > 1 is Pisot, then x is “normal in base β”, in the sense that the sequence (xβn)n∈N is uniformly distributed modulo one. We work with the notion of P-martingale, a generalization of martingales to non-uniform distributions, and show that a sequence over a finite alphabet is distributed according to an irreducible, invariant Markov measure P if an only if no P-martingale whose betting factors are computed by a deterministic finite automaton succeeds on it. This is a generalization of Schnorr and Stimm’s characterization of normal sequences in integer bases. Our results use tools and techniques from symbolic dynamics, together with automata theory and algorithmic randomness.Fil: Almarza, Javier Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Figueira, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; ArgentinaAcademic Press Inc Elsevier Science2015-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/43163Almarza, Javier Ignacio; Figueira, Santiago; Normality in non-integer bases and polynomial time randomness; Academic Press Inc Elsevier Science; Journal of Computer and System Sciences; 81; 7; 4-2015; 1059-10870022-00001090-2724CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jcss.2015.04.005info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022000015000434info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1410.8594info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:06:47Zoai:ri.conicet.gov.ar:11336/43163instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:06:47.621CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Normality in non-integer bases and polynomial time randomness
title Normality in non-integer bases and polynomial time randomness
spellingShingle Normality in non-integer bases and polynomial time randomness
Almarza, Javier Ignacio
Algorithmic Randomness
Deterministic Finite Automaton
Subshift
Pisot Number
Normality
Polynomial Randomness
Martingale
title_short Normality in non-integer bases and polynomial time randomness
title_full Normality in non-integer bases and polynomial time randomness
title_fullStr Normality in non-integer bases and polynomial time randomness
title_full_unstemmed Normality in non-integer bases and polynomial time randomness
title_sort Normality in non-integer bases and polynomial time randomness
dc.creator.none.fl_str_mv Almarza, Javier Ignacio
Figueira, Santiago
author Almarza, Javier Ignacio
author_facet Almarza, Javier Ignacio
Figueira, Santiago
author_role author
author2 Figueira, Santiago
author2_role author
dc.subject.none.fl_str_mv Algorithmic Randomness
Deterministic Finite Automaton
Subshift
Pisot Number
Normality
Polynomial Randomness
Martingale
topic Algorithmic Randomness
Deterministic Finite Automaton
Subshift
Pisot Number
Normality
Polynomial Randomness
Martingale
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv It is known that if x ∈ [0, 1] is polynomial time random (i.e. no polynomial time computable martingale succeeds on the binary fractional expansion of x) then x is normal in any integer base greater than one. We show that if x is polynomial time random and β > 1 is Pisot, then x is “normal in base β”, in the sense that the sequence (xβn)n∈N is uniformly distributed modulo one. We work with the notion of P-martingale, a generalization of martingales to non-uniform distributions, and show that a sequence over a finite alphabet is distributed according to an irreducible, invariant Markov measure P if an only if no P-martingale whose betting factors are computed by a deterministic finite automaton succeeds on it. This is a generalization of Schnorr and Stimm’s characterization of normal sequences in integer bases. Our results use tools and techniques from symbolic dynamics, together with automata theory and algorithmic randomness.
Fil: Almarza, Javier Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Figueira, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina
description It is known that if x ∈ [0, 1] is polynomial time random (i.e. no polynomial time computable martingale succeeds on the binary fractional expansion of x) then x is normal in any integer base greater than one. We show that if x is polynomial time random and β > 1 is Pisot, then x is “normal in base β”, in the sense that the sequence (xβn)n∈N is uniformly distributed modulo one. We work with the notion of P-martingale, a generalization of martingales to non-uniform distributions, and show that a sequence over a finite alphabet is distributed according to an irreducible, invariant Markov measure P if an only if no P-martingale whose betting factors are computed by a deterministic finite automaton succeeds on it. This is a generalization of Schnorr and Stimm’s characterization of normal sequences in integer bases. Our results use tools and techniques from symbolic dynamics, together with automata theory and algorithmic randomness.
publishDate 2015
dc.date.none.fl_str_mv 2015-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/43163
Almarza, Javier Ignacio; Figueira, Santiago; Normality in non-integer bases and polynomial time randomness; Academic Press Inc Elsevier Science; Journal of Computer and System Sciences; 81; 7; 4-2015; 1059-1087
0022-0000
1090-2724
CONICET Digital
CONICET
url http://hdl.handle.net/11336/43163
identifier_str_mv Almarza, Javier Ignacio; Figueira, Santiago; Normality in non-integer bases and polynomial time randomness; Academic Press Inc Elsevier Science; Journal of Computer and System Sciences; 81; 7; 4-2015; 1059-1087
0022-0000
1090-2724
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jcss.2015.04.005
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022000015000434
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1410.8594
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Academic Press Inc Elsevier Science
publisher.none.fl_str_mv Academic Press Inc Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269974498902016
score 13.13397