Normality in non-integer bases and polynomial time randomness
- Autores
- Almarza, Javier Ignacio; Figueira, Santiago
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- It is known that if x ∈ [0, 1] is polynomial time random (i.e. no polynomial time computable martingale succeeds on the binary fractional expansion of x) then x is normal in any integer base greater than one. We show that if x is polynomial time random and β > 1 is Pisot, then x is “normal in base β”, in the sense that the sequence (xβn)n∈N is uniformly distributed modulo one. We work with the notion of P-martingale, a generalization of martingales to non-uniform distributions, and show that a sequence over a finite alphabet is distributed according to an irreducible, invariant Markov measure P if an only if no P-martingale whose betting factors are computed by a deterministic finite automaton succeeds on it. This is a generalization of Schnorr and Stimm’s characterization of normal sequences in integer bases. Our results use tools and techniques from symbolic dynamics, together with automata theory and algorithmic randomness.
Fil: Almarza, Javier Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Figueira, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina - Materia
-
Algorithmic Randomness
Deterministic Finite Automaton
Subshift
Pisot Number
Normality
Polynomial Randomness
Martingale - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/43163
Ver los metadatos del registro completo
id |
CONICETDig_ef1d65dbe2bdc6650481ba4421692a35 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/43163 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Normality in non-integer bases and polynomial time randomnessAlmarza, Javier IgnacioFigueira, SantiagoAlgorithmic RandomnessDeterministic Finite AutomatonSubshiftPisot NumberNormalityPolynomial RandomnessMartingalehttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1It is known that if x ∈ [0, 1] is polynomial time random (i.e. no polynomial time computable martingale succeeds on the binary fractional expansion of x) then x is normal in any integer base greater than one. We show that if x is polynomial time random and β > 1 is Pisot, then x is “normal in base β”, in the sense that the sequence (xβn)n∈N is uniformly distributed modulo one. We work with the notion of P-martingale, a generalization of martingales to non-uniform distributions, and show that a sequence over a finite alphabet is distributed according to an irreducible, invariant Markov measure P if an only if no P-martingale whose betting factors are computed by a deterministic finite automaton succeeds on it. This is a generalization of Schnorr and Stimm’s characterization of normal sequences in integer bases. Our results use tools and techniques from symbolic dynamics, together with automata theory and algorithmic randomness.Fil: Almarza, Javier Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Figueira, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; ArgentinaAcademic Press Inc Elsevier Science2015-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/43163Almarza, Javier Ignacio; Figueira, Santiago; Normality in non-integer bases and polynomial time randomness; Academic Press Inc Elsevier Science; Journal of Computer and System Sciences; 81; 7; 4-2015; 1059-10870022-00001090-2724CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jcss.2015.04.005info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022000015000434info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1410.8594info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:06:47Zoai:ri.conicet.gov.ar:11336/43163instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:06:47.621CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Normality in non-integer bases and polynomial time randomness |
title |
Normality in non-integer bases and polynomial time randomness |
spellingShingle |
Normality in non-integer bases and polynomial time randomness Almarza, Javier Ignacio Algorithmic Randomness Deterministic Finite Automaton Subshift Pisot Number Normality Polynomial Randomness Martingale |
title_short |
Normality in non-integer bases and polynomial time randomness |
title_full |
Normality in non-integer bases and polynomial time randomness |
title_fullStr |
Normality in non-integer bases and polynomial time randomness |
title_full_unstemmed |
Normality in non-integer bases and polynomial time randomness |
title_sort |
Normality in non-integer bases and polynomial time randomness |
dc.creator.none.fl_str_mv |
Almarza, Javier Ignacio Figueira, Santiago |
author |
Almarza, Javier Ignacio |
author_facet |
Almarza, Javier Ignacio Figueira, Santiago |
author_role |
author |
author2 |
Figueira, Santiago |
author2_role |
author |
dc.subject.none.fl_str_mv |
Algorithmic Randomness Deterministic Finite Automaton Subshift Pisot Number Normality Polynomial Randomness Martingale |
topic |
Algorithmic Randomness Deterministic Finite Automaton Subshift Pisot Number Normality Polynomial Randomness Martingale |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
It is known that if x ∈ [0, 1] is polynomial time random (i.e. no polynomial time computable martingale succeeds on the binary fractional expansion of x) then x is normal in any integer base greater than one. We show that if x is polynomial time random and β > 1 is Pisot, then x is “normal in base β”, in the sense that the sequence (xβn)n∈N is uniformly distributed modulo one. We work with the notion of P-martingale, a generalization of martingales to non-uniform distributions, and show that a sequence over a finite alphabet is distributed according to an irreducible, invariant Markov measure P if an only if no P-martingale whose betting factors are computed by a deterministic finite automaton succeeds on it. This is a generalization of Schnorr and Stimm’s characterization of normal sequences in integer bases. Our results use tools and techniques from symbolic dynamics, together with automata theory and algorithmic randomness. Fil: Almarza, Javier Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina Fil: Figueira, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina |
description |
It is known that if x ∈ [0, 1] is polynomial time random (i.e. no polynomial time computable martingale succeeds on the binary fractional expansion of x) then x is normal in any integer base greater than one. We show that if x is polynomial time random and β > 1 is Pisot, then x is “normal in base β”, in the sense that the sequence (xβn)n∈N is uniformly distributed modulo one. We work with the notion of P-martingale, a generalization of martingales to non-uniform distributions, and show that a sequence over a finite alphabet is distributed according to an irreducible, invariant Markov measure P if an only if no P-martingale whose betting factors are computed by a deterministic finite automaton succeeds on it. This is a generalization of Schnorr and Stimm’s characterization of normal sequences in integer bases. Our results use tools and techniques from symbolic dynamics, together with automata theory and algorithmic randomness. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/43163 Almarza, Javier Ignacio; Figueira, Santiago; Normality in non-integer bases and polynomial time randomness; Academic Press Inc Elsevier Science; Journal of Computer and System Sciences; 81; 7; 4-2015; 1059-1087 0022-0000 1090-2724 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/43163 |
identifier_str_mv |
Almarza, Javier Ignacio; Figueira, Santiago; Normality in non-integer bases and polynomial time randomness; Academic Press Inc Elsevier Science; Journal of Computer and System Sciences; 81; 7; 4-2015; 1059-1087 0022-0000 1090-2724 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jcss.2015.04.005 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022000015000434 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1410.8594 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269974498902016 |
score |
13.13397 |