Random reals à la Chaitin with or without prefix-freeness
- Autores
- Becher, V.; Grigorieff, S.
- Año de publicación
- 2007
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We give a general theorem that provides examples of n-random reals à la Chaitin, for every n ≥ 1; these are halting probabilities of partial computable functions that are universal by adjunction for the class of all partial computable functions, The same result holds for the class functions of partial computable functions with prefix-free domain. Thus, the usual technical requirement of prefix-freeness on domains is an option which we show to be non-critical when dealing with universality by adjunction. We also prove that the condition of universality by adjunction (which, though particular, is a very natural case of optimality) is essential in our theorem. © 2007 Elsevier Ltd. All rights reserved.
Fil:Becher, V. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- Theor Comput Sci 2007;385(1-3):193-201
- Materia
-
Algorithmic randomness
Kolmogorov complexity
Omega numbers
Random reals
Function evaluation
Probability
Problem solving
Algorithmic randomness
Kolmogorov complexity
Omega numbers
Random reals
Theorem proving - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_03043975_v385_n1-3_p193_Becher
Ver los metadatos del registro completo
id |
BDUBAFCEN_57949036f635eaddcce0a2e0c443d051 |
---|---|
oai_identifier_str |
paperaa:paper_03043975_v385_n1-3_p193_Becher |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
Random reals à la Chaitin with or without prefix-freenessBecher, V.Grigorieff, S.Algorithmic randomnessKolmogorov complexityOmega numbersRandom realsFunction evaluationProbabilityProblem solvingAlgorithmic randomnessKolmogorov complexityOmega numbersRandom realsTheorem provingWe give a general theorem that provides examples of n-random reals à la Chaitin, for every n ≥ 1; these are halting probabilities of partial computable functions that are universal by adjunction for the class of all partial computable functions, The same result holds for the class functions of partial computable functions with prefix-free domain. Thus, the usual technical requirement of prefix-freeness on domains is an option which we show to be non-critical when dealing with universality by adjunction. We also prove that the condition of universality by adjunction (which, though particular, is a very natural case of optimality) is essential in our theorem. © 2007 Elsevier Ltd. All rights reserved.Fil:Becher, V. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2007info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_03043975_v385_n1-3_p193_BecherTheor Comput Sci 2007;385(1-3):193-201reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-04T09:48:40Zpaperaa:paper_03043975_v385_n1-3_p193_BecherInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-04 09:48:42.773Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
Random reals à la Chaitin with or without prefix-freeness |
title |
Random reals à la Chaitin with or without prefix-freeness |
spellingShingle |
Random reals à la Chaitin with or without prefix-freeness Becher, V. Algorithmic randomness Kolmogorov complexity Omega numbers Random reals Function evaluation Probability Problem solving Algorithmic randomness Kolmogorov complexity Omega numbers Random reals Theorem proving |
title_short |
Random reals à la Chaitin with or without prefix-freeness |
title_full |
Random reals à la Chaitin with or without prefix-freeness |
title_fullStr |
Random reals à la Chaitin with or without prefix-freeness |
title_full_unstemmed |
Random reals à la Chaitin with or without prefix-freeness |
title_sort |
Random reals à la Chaitin with or without prefix-freeness |
dc.creator.none.fl_str_mv |
Becher, V. Grigorieff, S. |
author |
Becher, V. |
author_facet |
Becher, V. Grigorieff, S. |
author_role |
author |
author2 |
Grigorieff, S. |
author2_role |
author |
dc.subject.none.fl_str_mv |
Algorithmic randomness Kolmogorov complexity Omega numbers Random reals Function evaluation Probability Problem solving Algorithmic randomness Kolmogorov complexity Omega numbers Random reals Theorem proving |
topic |
Algorithmic randomness Kolmogorov complexity Omega numbers Random reals Function evaluation Probability Problem solving Algorithmic randomness Kolmogorov complexity Omega numbers Random reals Theorem proving |
dc.description.none.fl_txt_mv |
We give a general theorem that provides examples of n-random reals à la Chaitin, for every n ≥ 1; these are halting probabilities of partial computable functions that are universal by adjunction for the class of all partial computable functions, The same result holds for the class functions of partial computable functions with prefix-free domain. Thus, the usual technical requirement of prefix-freeness on domains is an option which we show to be non-critical when dealing with universality by adjunction. We also prove that the condition of universality by adjunction (which, though particular, is a very natural case of optimality) is essential in our theorem. © 2007 Elsevier Ltd. All rights reserved. Fil:Becher, V. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
We give a general theorem that provides examples of n-random reals à la Chaitin, for every n ≥ 1; these are halting probabilities of partial computable functions that are universal by adjunction for the class of all partial computable functions, The same result holds for the class functions of partial computable functions with prefix-free domain. Thus, the usual technical requirement of prefix-freeness on domains is an option which we show to be non-critical when dealing with universality by adjunction. We also prove that the condition of universality by adjunction (which, though particular, is a very natural case of optimality) is essential in our theorem. © 2007 Elsevier Ltd. All rights reserved. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_03043975_v385_n1-3_p193_Becher |
url |
http://hdl.handle.net/20.500.12110/paper_03043975_v385_n1-3_p193_Becher |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
Theor Comput Sci 2007;385(1-3):193-201 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1842340706068201472 |
score |
12.623145 |