Adaptive matrix metrics for molecular descriptor assessment in QSPR classification
- Autores
- Soto, Axel Juan; Strickert, Marc; Vazquez, Gustavo Esteban
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- QSPR methods represent a useful approach in the drug discovery process, since they allow to predict in advance biological or physicochemical properties of a candidate drug. For this goal, it is necessary that the QSPR method be as accurate as possible to provide reliable predictions. Moreover, the selection of the molecular descriptors is an important task to create QSPR prediction models of low complexity which, at the same time, provide accurate predictions. In this work, a matrix-based method is used to transform the original data space of chemical compounds into an alternative space where compounds with different target properties can be better separated. For using this approach, QSPR is considered as a classification problem. The advantage of using adaptive matrix metrics is twofold: it can be used to identify important molecular descriptors and at the same time it allows improving the classification accuracy. A recently proposed method making use of this concept is extended to multi-class data. The new method is related to linear discriminant analysis and shows better results at yet higher computational costs. An application for relating chemical descriptors to hydrophobicity property shows promising results.
Fil: Soto, Axel Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
Fil: Strickert, Marc. Leibniz Institute of Plant Genetics and Crop Plant Research; Alemania
Fil: Vazquez, Gustavo Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina - Materia
-
Adaptive matrix metrics
QSAR - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/62306
Ver los metadatos del registro completo
id |
CONICETDig_2aa563c0b157a0d25ef3c3acec7de58f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/62306 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Adaptive matrix metrics for molecular descriptor assessment in QSPR classificationSoto, Axel JuanStrickert, MarcVazquez, Gustavo EstebanAdaptive matrix metricsQSARhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1QSPR methods represent a useful approach in the drug discovery process, since they allow to predict in advance biological or physicochemical properties of a candidate drug. For this goal, it is necessary that the QSPR method be as accurate as possible to provide reliable predictions. Moreover, the selection of the molecular descriptors is an important task to create QSPR prediction models of low complexity which, at the same time, provide accurate predictions. In this work, a matrix-based method is used to transform the original data space of chemical compounds into an alternative space where compounds with different target properties can be better separated. For using this approach, QSPR is considered as a classification problem. The advantage of using adaptive matrix metrics is twofold: it can be used to identify important molecular descriptors and at the same time it allows improving the classification accuracy. A recently proposed method making use of this concept is extended to multi-class data. The new method is related to linear discriminant analysis and shows better results at yet higher computational costs. An application for relating chemical descriptors to hydrophobicity property shows promising results.Fil: Soto, Axel Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaFil: Strickert, Marc. Leibniz Institute of Plant Genetics and Crop Plant Research; AlemaniaFil: Vazquez, Gustavo Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaChemistry Central2010-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/62306Soto, Axel Juan; Strickert, Marc; Vazquez, Gustavo Esteban; Adaptive matrix metrics for molecular descriptor assessment in QSPR classification; Chemistry Central; Journal of Cheminformatics; 2; s1; 3-2010; 47-471758-2946CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1186/1758-2946-2-S1-P47info:eu-repo/semantics/altIdentifier/url/https://jcheminf.biomedcentral.com/articles/10.1186/1758-2946-2-S1-P47info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:55:03Zoai:ri.conicet.gov.ar:11336/62306instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:55:04.072CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Adaptive matrix metrics for molecular descriptor assessment in QSPR classification |
title |
Adaptive matrix metrics for molecular descriptor assessment in QSPR classification |
spellingShingle |
Adaptive matrix metrics for molecular descriptor assessment in QSPR classification Soto, Axel Juan Adaptive matrix metrics QSAR |
title_short |
Adaptive matrix metrics for molecular descriptor assessment in QSPR classification |
title_full |
Adaptive matrix metrics for molecular descriptor assessment in QSPR classification |
title_fullStr |
Adaptive matrix metrics for molecular descriptor assessment in QSPR classification |
title_full_unstemmed |
Adaptive matrix metrics for molecular descriptor assessment in QSPR classification |
title_sort |
Adaptive matrix metrics for molecular descriptor assessment in QSPR classification |
dc.creator.none.fl_str_mv |
Soto, Axel Juan Strickert, Marc Vazquez, Gustavo Esteban |
author |
Soto, Axel Juan |
author_facet |
Soto, Axel Juan Strickert, Marc Vazquez, Gustavo Esteban |
author_role |
author |
author2 |
Strickert, Marc Vazquez, Gustavo Esteban |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Adaptive matrix metrics QSAR |
topic |
Adaptive matrix metrics QSAR |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
QSPR methods represent a useful approach in the drug discovery process, since they allow to predict in advance biological or physicochemical properties of a candidate drug. For this goal, it is necessary that the QSPR method be as accurate as possible to provide reliable predictions. Moreover, the selection of the molecular descriptors is an important task to create QSPR prediction models of low complexity which, at the same time, provide accurate predictions. In this work, a matrix-based method is used to transform the original data space of chemical compounds into an alternative space where compounds with different target properties can be better separated. For using this approach, QSPR is considered as a classification problem. The advantage of using adaptive matrix metrics is twofold: it can be used to identify important molecular descriptors and at the same time it allows improving the classification accuracy. A recently proposed method making use of this concept is extended to multi-class data. The new method is related to linear discriminant analysis and shows better results at yet higher computational costs. An application for relating chemical descriptors to hydrophobicity property shows promising results. Fil: Soto, Axel Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina Fil: Strickert, Marc. Leibniz Institute of Plant Genetics and Crop Plant Research; Alemania Fil: Vazquez, Gustavo Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina |
description |
QSPR methods represent a useful approach in the drug discovery process, since they allow to predict in advance biological or physicochemical properties of a candidate drug. For this goal, it is necessary that the QSPR method be as accurate as possible to provide reliable predictions. Moreover, the selection of the molecular descriptors is an important task to create QSPR prediction models of low complexity which, at the same time, provide accurate predictions. In this work, a matrix-based method is used to transform the original data space of chemical compounds into an alternative space where compounds with different target properties can be better separated. For using this approach, QSPR is considered as a classification problem. The advantage of using adaptive matrix metrics is twofold: it can be used to identify important molecular descriptors and at the same time it allows improving the classification accuracy. A recently proposed method making use of this concept is extended to multi-class data. The new method is related to linear discriminant analysis and shows better results at yet higher computational costs. An application for relating chemical descriptors to hydrophobicity property shows promising results. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/62306 Soto, Axel Juan; Strickert, Marc; Vazquez, Gustavo Esteban; Adaptive matrix metrics for molecular descriptor assessment in QSPR classification; Chemistry Central; Journal of Cheminformatics; 2; s1; 3-2010; 47-47 1758-2946 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/62306 |
identifier_str_mv |
Soto, Axel Juan; Strickert, Marc; Vazquez, Gustavo Esteban; Adaptive matrix metrics for molecular descriptor assessment in QSPR classification; Chemistry Central; Journal of Cheminformatics; 2; s1; 3-2010; 47-47 1758-2946 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1186/1758-2946-2-S1-P47 info:eu-repo/semantics/altIdentifier/url/https://jcheminf.biomedcentral.com/articles/10.1186/1758-2946-2-S1-P47 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Chemistry Central |
publisher.none.fl_str_mv |
Chemistry Central |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269321973202944 |
score |
13.13397 |