Optimal Partition of Datasets of QSPR Studies: A Sampling Problem
- Autores
- Talevi, Alan; Bellera, Carolina Leticia; Castro, Eduardo Alberto; Bruno Blanch, Luis Enrique
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Starting from different partitions of a 160 compounds dataset into training and test sets, we developed discriminant funtions to classify drugs into different categories of human intestinal absorptions rate. For each partition of the dataser, models that included up to ten Dragon descriptors were built, and the performance of each discriminante funtion in teh classification of the training and test sets was assessec and explores graphically through divergence diagrams. Results suggest that external validation tends to underestimate the predictive capability of QSAR models and that the more raliable results from external validation are obtained with even partitions of small and medium size datasets.
Fil: Talevi, Alan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas; Argentina
Fil: Bellera, Carolina Leticia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas; Argentina
Fil: Castro, Eduardo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
Fil: Bruno Blanch, Luis Enrique. Universidad Nacional de La Plata. Facultad de Ciencias Exactas; Argentina - Materia
-
QSAR
MODELS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/127000
Ver los metadatos del registro completo
id |
CONICETDig_70199401fe090d50d728eb80549b3842 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/127000 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Optimal Partition of Datasets of QSPR Studies: A Sampling ProblemTalevi, AlanBellera, Carolina LeticiaCastro, Eduardo AlbertoBruno Blanch, Luis EnriqueQSARMODELShttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Starting from different partitions of a 160 compounds dataset into training and test sets, we developed discriminant funtions to classify drugs into different categories of human intestinal absorptions rate. For each partition of the dataser, models that included up to ten Dragon descriptors were built, and the performance of each discriminante funtion in teh classification of the training and test sets was assessec and explores graphically through divergence diagrams. Results suggest that external validation tends to underestimate the predictive capability of QSAR models and that the more raliable results from external validation are obtained with even partitions of small and medium size datasets.Fil: Talevi, Alan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas; ArgentinaFil: Bellera, Carolina Leticia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas; ArgentinaFil: Castro, Eduardo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Bruno Blanch, Luis Enrique. Universidad Nacional de La Plata. Facultad de Ciencias Exactas; ArgentinaUniv Kragujevac2010-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/127000Talevi, Alan; Bellera, Carolina Leticia; Castro, Eduardo Alberto; Bruno Blanch, Luis Enrique; Optimal Partition of Datasets of QSPR Studies: A Sampling Problem; Univ Kragujevac; Match-communications In Mathematical And In Computer Chemistry; 63; 3; 4-2010; 585-5990340-6253CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://match.pmf.kg.ac.rs/content63n3.htminfo:eu-repo/semantics/altIdentifier/url/https://match.pmf.kg.ac.rs/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:23:01Zoai:ri.conicet.gov.ar:11336/127000instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:23:01.863CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Optimal Partition of Datasets of QSPR Studies: A Sampling Problem |
title |
Optimal Partition of Datasets of QSPR Studies: A Sampling Problem |
spellingShingle |
Optimal Partition of Datasets of QSPR Studies: A Sampling Problem Talevi, Alan QSAR MODELS |
title_short |
Optimal Partition of Datasets of QSPR Studies: A Sampling Problem |
title_full |
Optimal Partition of Datasets of QSPR Studies: A Sampling Problem |
title_fullStr |
Optimal Partition of Datasets of QSPR Studies: A Sampling Problem |
title_full_unstemmed |
Optimal Partition of Datasets of QSPR Studies: A Sampling Problem |
title_sort |
Optimal Partition of Datasets of QSPR Studies: A Sampling Problem |
dc.creator.none.fl_str_mv |
Talevi, Alan Bellera, Carolina Leticia Castro, Eduardo Alberto Bruno Blanch, Luis Enrique |
author |
Talevi, Alan |
author_facet |
Talevi, Alan Bellera, Carolina Leticia Castro, Eduardo Alberto Bruno Blanch, Luis Enrique |
author_role |
author |
author2 |
Bellera, Carolina Leticia Castro, Eduardo Alberto Bruno Blanch, Luis Enrique |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
QSAR MODELS |
topic |
QSAR MODELS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Starting from different partitions of a 160 compounds dataset into training and test sets, we developed discriminant funtions to classify drugs into different categories of human intestinal absorptions rate. For each partition of the dataser, models that included up to ten Dragon descriptors were built, and the performance of each discriminante funtion in teh classification of the training and test sets was assessec and explores graphically through divergence diagrams. Results suggest that external validation tends to underestimate the predictive capability of QSAR models and that the more raliable results from external validation are obtained with even partitions of small and medium size datasets. Fil: Talevi, Alan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas; Argentina Fil: Bellera, Carolina Leticia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas; Argentina Fil: Castro, Eduardo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina Fil: Bruno Blanch, Luis Enrique. Universidad Nacional de La Plata. Facultad de Ciencias Exactas; Argentina |
description |
Starting from different partitions of a 160 compounds dataset into training and test sets, we developed discriminant funtions to classify drugs into different categories of human intestinal absorptions rate. For each partition of the dataser, models that included up to ten Dragon descriptors were built, and the performance of each discriminante funtion in teh classification of the training and test sets was assessec and explores graphically through divergence diagrams. Results suggest that external validation tends to underestimate the predictive capability of QSAR models and that the more raliable results from external validation are obtained with even partitions of small and medium size datasets. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/127000 Talevi, Alan; Bellera, Carolina Leticia; Castro, Eduardo Alberto; Bruno Blanch, Luis Enrique; Optimal Partition of Datasets of QSPR Studies: A Sampling Problem; Univ Kragujevac; Match-communications In Mathematical And In Computer Chemistry; 63; 3; 4-2010; 585-599 0340-6253 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/127000 |
identifier_str_mv |
Talevi, Alan; Bellera, Carolina Leticia; Castro, Eduardo Alberto; Bruno Blanch, Luis Enrique; Optimal Partition of Datasets of QSPR Studies: A Sampling Problem; Univ Kragujevac; Match-communications In Mathematical And In Computer Chemistry; 63; 3; 4-2010; 585-599 0340-6253 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://match.pmf.kg.ac.rs/content63n3.htm info:eu-repo/semantics/altIdentifier/url/https://match.pmf.kg.ac.rs/ |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Univ Kragujevac |
publisher.none.fl_str_mv |
Univ Kragujevac |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083377166286848 |
score |
13.22299 |