Gaussian random permutation and the boson point process
- Autores
- Armendáriz, María Inés; Ferrari, Pablo Augusto; Yuhjtman, Sergio Andrés
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We construct an infinite volume spatial random permutation (χ,σ), where χ⊂ℝd is a point process and σ:χ→χ is a permutation (bijection), associated to the formal Hamiltonian H(χ,σ)=∑_x∈χ‖x−σ(x)‖2. The measures are parametrized by the density ρ of points and the temperature α. Feynman (1953) related spatial random permutations with boson systems and proposed that Bose-Einstein condensation occurs precisely when infinite cycles appear in the corresponding random permutation. Each finite cycle of σ induces a loop of points of χ. For ρ ≤ ρc we define (χ, σ) as a Poisson process of finite unrooted loops that we call Gaussian loop soup, analogous to the Brownian loop soup of Lawler and Werner (2004). We also construct Gaussian random interlacements, a Poisson process of double-infinite trajectories of random walks with Gaussian increments analogous to the Brownian random interlacements of Sznitman (2007). For d ≥ 3 and ρ > ρc we define (χ, σ) as the superposition of independent realizations of the Gaussian loop soup at density ρc and the Gaussian random interlacements at density ρ − ρc and call it a Gaussian random permutation at density ρ and temperature α. The resulting measure is Gibbs for the Hamiltonian H and the point marginal χ has the same distribution as the boson point process introduced by Macchi (1975) in the subcritical case and by Tamura-Ito (2007) in the supercritical case. Bose-Einstein condensation occurs when the Gaussian random permutation exhibits infinite trajectories.
Fil: Armendáriz, María Inés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Ferrari, Pablo Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Yuhjtman, Sergio Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
SPATIAL RANDOM PERMUTATIONS
BOSE GAS
BOSON PROCESS
RANDOM INTERLACEMENTS
LOOP SOUP - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/136897
Ver los metadatos del registro completo
id |
CONICETDig_29fef8bc99aec83144bc0d1703432da7 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/136897 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Gaussian random permutation and the boson point processArmendáriz, María InésFerrari, Pablo AugustoYuhjtman, Sergio AndrésSPATIAL RANDOM PERMUTATIONSBOSE GASBOSON PROCESSRANDOM INTERLACEMENTSLOOP SOUPhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We construct an infinite volume spatial random permutation (χ,σ), where χ⊂ℝd is a point process and σ:χ→χ is a permutation (bijection), associated to the formal Hamiltonian H(χ,σ)=∑_x∈χ‖x−σ(x)‖2. The measures are parametrized by the density ρ of points and the temperature α. Feynman (1953) related spatial random permutations with boson systems and proposed that Bose-Einstein condensation occurs precisely when infinite cycles appear in the corresponding random permutation. Each finite cycle of σ induces a loop of points of χ. For ρ ≤ ρc we define (χ, σ) as a Poisson process of finite unrooted loops that we call Gaussian loop soup, analogous to the Brownian loop soup of Lawler and Werner (2004). We also construct Gaussian random interlacements, a Poisson process of double-infinite trajectories of random walks with Gaussian increments analogous to the Brownian random interlacements of Sznitman (2007). For d ≥ 3 and ρ > ρc we define (χ, σ) as the superposition of independent realizations of the Gaussian loop soup at density ρc and the Gaussian random interlacements at density ρ − ρc and call it a Gaussian random permutation at density ρ and temperature α. The resulting measure is Gibbs for the Hamiltonian H and the point marginal χ has the same distribution as the boson point process introduced by Macchi (1975) in the subcritical case and by Tamura-Ito (2007) in the supercritical case. Bose-Einstein condensation occurs when the Gaussian random permutation exhibits infinite trajectories.Fil: Armendáriz, María Inés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Ferrari, Pablo Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Yuhjtman, Sergio Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaCornell University2019-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/136897Armendáriz, María Inés; Ferrari, Pablo Augusto; Yuhjtman, Sergio Andrés; Gaussian random permutation and the boson point process; Cornell University; arXiv; 6-2019; 1-322331-8422CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1906.11120info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:36:08Zoai:ri.conicet.gov.ar:11336/136897instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:36:08.735CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Gaussian random permutation and the boson point process |
title |
Gaussian random permutation and the boson point process |
spellingShingle |
Gaussian random permutation and the boson point process Armendáriz, María Inés SPATIAL RANDOM PERMUTATIONS BOSE GAS BOSON PROCESS RANDOM INTERLACEMENTS LOOP SOUP |
title_short |
Gaussian random permutation and the boson point process |
title_full |
Gaussian random permutation and the boson point process |
title_fullStr |
Gaussian random permutation and the boson point process |
title_full_unstemmed |
Gaussian random permutation and the boson point process |
title_sort |
Gaussian random permutation and the boson point process |
dc.creator.none.fl_str_mv |
Armendáriz, María Inés Ferrari, Pablo Augusto Yuhjtman, Sergio Andrés |
author |
Armendáriz, María Inés |
author_facet |
Armendáriz, María Inés Ferrari, Pablo Augusto Yuhjtman, Sergio Andrés |
author_role |
author |
author2 |
Ferrari, Pablo Augusto Yuhjtman, Sergio Andrés |
author2_role |
author author |
dc.subject.none.fl_str_mv |
SPATIAL RANDOM PERMUTATIONS BOSE GAS BOSON PROCESS RANDOM INTERLACEMENTS LOOP SOUP |
topic |
SPATIAL RANDOM PERMUTATIONS BOSE GAS BOSON PROCESS RANDOM INTERLACEMENTS LOOP SOUP |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We construct an infinite volume spatial random permutation (χ,σ), where χ⊂ℝd is a point process and σ:χ→χ is a permutation (bijection), associated to the formal Hamiltonian H(χ,σ)=∑_x∈χ‖x−σ(x)‖2. The measures are parametrized by the density ρ of points and the temperature α. Feynman (1953) related spatial random permutations with boson systems and proposed that Bose-Einstein condensation occurs precisely when infinite cycles appear in the corresponding random permutation. Each finite cycle of σ induces a loop of points of χ. For ρ ≤ ρc we define (χ, σ) as a Poisson process of finite unrooted loops that we call Gaussian loop soup, analogous to the Brownian loop soup of Lawler and Werner (2004). We also construct Gaussian random interlacements, a Poisson process of double-infinite trajectories of random walks with Gaussian increments analogous to the Brownian random interlacements of Sznitman (2007). For d ≥ 3 and ρ > ρc we define (χ, σ) as the superposition of independent realizations of the Gaussian loop soup at density ρc and the Gaussian random interlacements at density ρ − ρc and call it a Gaussian random permutation at density ρ and temperature α. The resulting measure is Gibbs for the Hamiltonian H and the point marginal χ has the same distribution as the boson point process introduced by Macchi (1975) in the subcritical case and by Tamura-Ito (2007) in the supercritical case. Bose-Einstein condensation occurs when the Gaussian random permutation exhibits infinite trajectories. Fil: Armendáriz, María Inés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Ferrari, Pablo Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Yuhjtman, Sergio Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
description |
We construct an infinite volume spatial random permutation (χ,σ), where χ⊂ℝd is a point process and σ:χ→χ is a permutation (bijection), associated to the formal Hamiltonian H(χ,σ)=∑_x∈χ‖x−σ(x)‖2. The measures are parametrized by the density ρ of points and the temperature α. Feynman (1953) related spatial random permutations with boson systems and proposed that Bose-Einstein condensation occurs precisely when infinite cycles appear in the corresponding random permutation. Each finite cycle of σ induces a loop of points of χ. For ρ ≤ ρc we define (χ, σ) as a Poisson process of finite unrooted loops that we call Gaussian loop soup, analogous to the Brownian loop soup of Lawler and Werner (2004). We also construct Gaussian random interlacements, a Poisson process of double-infinite trajectories of random walks with Gaussian increments analogous to the Brownian random interlacements of Sznitman (2007). For d ≥ 3 and ρ > ρc we define (χ, σ) as the superposition of independent realizations of the Gaussian loop soup at density ρc and the Gaussian random interlacements at density ρ − ρc and call it a Gaussian random permutation at density ρ and temperature α. The resulting measure is Gibbs for the Hamiltonian H and the point marginal χ has the same distribution as the boson point process introduced by Macchi (1975) in the subcritical case and by Tamura-Ito (2007) in the supercritical case. Bose-Einstein condensation occurs when the Gaussian random permutation exhibits infinite trajectories. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/136897 Armendáriz, María Inés; Ferrari, Pablo Augusto; Yuhjtman, Sergio Andrés; Gaussian random permutation and the boson point process; Cornell University; arXiv; 6-2019; 1-32 2331-8422 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/136897 |
identifier_str_mv |
Armendáriz, María Inés; Ferrari, Pablo Augusto; Yuhjtman, Sergio Andrés; Gaussian random permutation and the boson point process; Cornell University; arXiv; 6-2019; 1-32 2331-8422 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1906.11120 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Cornell University |
publisher.none.fl_str_mv |
Cornell University |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613130969153536 |
score |
13.070432 |