Quantum work for sudden quenches in Gaussian random Hamiltonians

Autores
Arrais, Eric G.; Wisniacki, Diego Ariel; Céleri, Lucas C.; De Almeida, Norton G.; Roncaglia, Augusto Jose; Toscano, Fabricio
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In the context of nonequilibrium quantum thermodynamics, variables like work behave stochastically. A particular definition of the work probability density function (pdf) for coherent quantum processes allows the verification of the quantum version of the celebrated fluctuation theorems, due to Jarzynski and Crooks, that apply when the system is driven away from an initial equilibrium thermal state. Such a particular pdf depends basically on the details of the initial and final Hamiltonians, on the temperature of the initial thermal state, and on how some external parameter is changed during the coherent process. Using random matrix theory we derive a simple analytic expression that describes the general behavior of the work characteristic function G(u), associated with this particular work pdf for sudden quenches, valid for all the traditional Gaussian ensembles of Hamiltonians matrices. This formula well describes the general behavior of G(u) calculated from single draws of the initial and final Hamiltonians in all ranges of temperatures.
Fil: Arrais, Eric G.. Universidade Federal do Rio de Janeiro; Brasil
Fil: Wisniacki, Diego Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Céleri, Lucas C.. Universidade Federal de Goiás; Brasil
Fil: De Almeida, Norton G.. Universidade Federal de Goiás; Brasil
Fil: Roncaglia, Augusto Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Toscano, Fabricio. Universidade Federal do Rio de Janeiro; Brasil
Materia
Quantum thermodynamics
Random matrix theory
Quantum work
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/97210

id CONICETDig_b4b165a3ce2b159f7e00ef306df7df9c
oai_identifier_str oai:ri.conicet.gov.ar:11336/97210
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Quantum work for sudden quenches in Gaussian random HamiltoniansArrais, Eric G.Wisniacki, Diego ArielCéleri, Lucas C.De Almeida, Norton G.Roncaglia, Augusto JoseToscano, FabricioQuantum thermodynamicsRandom matrix theoryQuantum workhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1In the context of nonequilibrium quantum thermodynamics, variables like work behave stochastically. A particular definition of the work probability density function (pdf) for coherent quantum processes allows the verification of the quantum version of the celebrated fluctuation theorems, due to Jarzynski and Crooks, that apply when the system is driven away from an initial equilibrium thermal state. Such a particular pdf depends basically on the details of the initial and final Hamiltonians, on the temperature of the initial thermal state, and on how some external parameter is changed during the coherent process. Using random matrix theory we derive a simple analytic expression that describes the general behavior of the work characteristic function G(u), associated with this particular work pdf for sudden quenches, valid for all the traditional Gaussian ensembles of Hamiltonians matrices. This formula well describes the general behavior of G(u) calculated from single draws of the initial and final Hamiltonians in all ranges of temperatures.Fil: Arrais, Eric G.. Universidade Federal do Rio de Janeiro; BrasilFil: Wisniacki, Diego Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Céleri, Lucas C.. Universidade Federal de Goiás; BrasilFil: De Almeida, Norton G.. Universidade Federal de Goiás; BrasilFil: Roncaglia, Augusto Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Toscano, Fabricio. Universidade Federal do Rio de Janeiro; BrasilAmerican Physical Society2018-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/97210Arrais, Eric G.; Wisniacki, Diego Ariel; Céleri, Lucas C.; De Almeida, Norton G.; Roncaglia, Augusto Jose; et al.; Quantum work for sudden quenches in Gaussian random Hamiltonians; American Physical Society; Physical Review E; 98; 1; 7-2018; 1-8; 0121062470-0045CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.98.012106info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.98.012106info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1802.10559info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:53:33Zoai:ri.conicet.gov.ar:11336/97210instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:53:34.13CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Quantum work for sudden quenches in Gaussian random Hamiltonians
title Quantum work for sudden quenches in Gaussian random Hamiltonians
spellingShingle Quantum work for sudden quenches in Gaussian random Hamiltonians
Arrais, Eric G.
Quantum thermodynamics
Random matrix theory
Quantum work
title_short Quantum work for sudden quenches in Gaussian random Hamiltonians
title_full Quantum work for sudden quenches in Gaussian random Hamiltonians
title_fullStr Quantum work for sudden quenches in Gaussian random Hamiltonians
title_full_unstemmed Quantum work for sudden quenches in Gaussian random Hamiltonians
title_sort Quantum work for sudden quenches in Gaussian random Hamiltonians
dc.creator.none.fl_str_mv Arrais, Eric G.
Wisniacki, Diego Ariel
Céleri, Lucas C.
De Almeida, Norton G.
Roncaglia, Augusto Jose
Toscano, Fabricio
author Arrais, Eric G.
author_facet Arrais, Eric G.
Wisniacki, Diego Ariel
Céleri, Lucas C.
De Almeida, Norton G.
Roncaglia, Augusto Jose
Toscano, Fabricio
author_role author
author2 Wisniacki, Diego Ariel
Céleri, Lucas C.
De Almeida, Norton G.
Roncaglia, Augusto Jose
Toscano, Fabricio
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv Quantum thermodynamics
Random matrix theory
Quantum work
topic Quantum thermodynamics
Random matrix theory
Quantum work
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In the context of nonequilibrium quantum thermodynamics, variables like work behave stochastically. A particular definition of the work probability density function (pdf) for coherent quantum processes allows the verification of the quantum version of the celebrated fluctuation theorems, due to Jarzynski and Crooks, that apply when the system is driven away from an initial equilibrium thermal state. Such a particular pdf depends basically on the details of the initial and final Hamiltonians, on the temperature of the initial thermal state, and on how some external parameter is changed during the coherent process. Using random matrix theory we derive a simple analytic expression that describes the general behavior of the work characteristic function G(u), associated with this particular work pdf for sudden quenches, valid for all the traditional Gaussian ensembles of Hamiltonians matrices. This formula well describes the general behavior of G(u) calculated from single draws of the initial and final Hamiltonians in all ranges of temperatures.
Fil: Arrais, Eric G.. Universidade Federal do Rio de Janeiro; Brasil
Fil: Wisniacki, Diego Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Céleri, Lucas C.. Universidade Federal de Goiás; Brasil
Fil: De Almeida, Norton G.. Universidade Federal de Goiás; Brasil
Fil: Roncaglia, Augusto Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Toscano, Fabricio. Universidade Federal do Rio de Janeiro; Brasil
description In the context of nonequilibrium quantum thermodynamics, variables like work behave stochastically. A particular definition of the work probability density function (pdf) for coherent quantum processes allows the verification of the quantum version of the celebrated fluctuation theorems, due to Jarzynski and Crooks, that apply when the system is driven away from an initial equilibrium thermal state. Such a particular pdf depends basically on the details of the initial and final Hamiltonians, on the temperature of the initial thermal state, and on how some external parameter is changed during the coherent process. Using random matrix theory we derive a simple analytic expression that describes the general behavior of the work characteristic function G(u), associated with this particular work pdf for sudden quenches, valid for all the traditional Gaussian ensembles of Hamiltonians matrices. This formula well describes the general behavior of G(u) calculated from single draws of the initial and final Hamiltonians in all ranges of temperatures.
publishDate 2018
dc.date.none.fl_str_mv 2018-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/97210
Arrais, Eric G.; Wisniacki, Diego Ariel; Céleri, Lucas C.; De Almeida, Norton G.; Roncaglia, Augusto Jose; et al.; Quantum work for sudden quenches in Gaussian random Hamiltonians; American Physical Society; Physical Review E; 98; 1; 7-2018; 1-8; 012106
2470-0045
CONICET Digital
CONICET
url http://hdl.handle.net/11336/97210
identifier_str_mv Arrais, Eric G.; Wisniacki, Diego Ariel; Céleri, Lucas C.; De Almeida, Norton G.; Roncaglia, Augusto Jose; et al.; Quantum work for sudden quenches in Gaussian random Hamiltonians; American Physical Society; Physical Review E; 98; 1; 7-2018; 1-8; 012106
2470-0045
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.98.012106
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.98.012106
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1802.10559
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269233624383488
score 13.13397