Quantum work for sudden quenches in Gaussian random Hamiltonians
- Autores
- Arrais, Eric G.; Wisniacki, Diego Ariel; Céleri, Lucas C.; De Almeida, Norton G.; Roncaglia, Augusto Jose; Toscano, Fabricio
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In the context of nonequilibrium quantum thermodynamics, variables like work behave stochastically. A particular definition of the work probability density function (pdf) for coherent quantum processes allows the verification of the quantum version of the celebrated fluctuation theorems, due to Jarzynski and Crooks, that apply when the system is driven away from an initial equilibrium thermal state. Such a particular pdf depends basically on the details of the initial and final Hamiltonians, on the temperature of the initial thermal state, and on how some external parameter is changed during the coherent process. Using random matrix theory we derive a simple analytic expression that describes the general behavior of the work characteristic function G(u), associated with this particular work pdf for sudden quenches, valid for all the traditional Gaussian ensembles of Hamiltonians matrices. This formula well describes the general behavior of G(u) calculated from single draws of the initial and final Hamiltonians in all ranges of temperatures.
Fil: Arrais, Eric G.. Universidade Federal do Rio de Janeiro; Brasil
Fil: Wisniacki, Diego Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Céleri, Lucas C.. Universidade Federal de Goiás; Brasil
Fil: De Almeida, Norton G.. Universidade Federal de Goiás; Brasil
Fil: Roncaglia, Augusto Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Toscano, Fabricio. Universidade Federal do Rio de Janeiro; Brasil - Materia
-
Quantum thermodynamics
Random matrix theory
Quantum work - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/97210
Ver los metadatos del registro completo
id |
CONICETDig_b4b165a3ce2b159f7e00ef306df7df9c |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/97210 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Quantum work for sudden quenches in Gaussian random HamiltoniansArrais, Eric G.Wisniacki, Diego ArielCéleri, Lucas C.De Almeida, Norton G.Roncaglia, Augusto JoseToscano, FabricioQuantum thermodynamicsRandom matrix theoryQuantum workhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1In the context of nonequilibrium quantum thermodynamics, variables like work behave stochastically. A particular definition of the work probability density function (pdf) for coherent quantum processes allows the verification of the quantum version of the celebrated fluctuation theorems, due to Jarzynski and Crooks, that apply when the system is driven away from an initial equilibrium thermal state. Such a particular pdf depends basically on the details of the initial and final Hamiltonians, on the temperature of the initial thermal state, and on how some external parameter is changed during the coherent process. Using random matrix theory we derive a simple analytic expression that describes the general behavior of the work characteristic function G(u), associated with this particular work pdf for sudden quenches, valid for all the traditional Gaussian ensembles of Hamiltonians matrices. This formula well describes the general behavior of G(u) calculated from single draws of the initial and final Hamiltonians in all ranges of temperatures.Fil: Arrais, Eric G.. Universidade Federal do Rio de Janeiro; BrasilFil: Wisniacki, Diego Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Céleri, Lucas C.. Universidade Federal de Goiás; BrasilFil: De Almeida, Norton G.. Universidade Federal de Goiás; BrasilFil: Roncaglia, Augusto Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Toscano, Fabricio. Universidade Federal do Rio de Janeiro; BrasilAmerican Physical Society2018-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/97210Arrais, Eric G.; Wisniacki, Diego Ariel; Céleri, Lucas C.; De Almeida, Norton G.; Roncaglia, Augusto Jose; et al.; Quantum work for sudden quenches in Gaussian random Hamiltonians; American Physical Society; Physical Review E; 98; 1; 7-2018; 1-8; 0121062470-0045CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.98.012106info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.98.012106info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1802.10559info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:53:33Zoai:ri.conicet.gov.ar:11336/97210instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:53:34.13CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Quantum work for sudden quenches in Gaussian random Hamiltonians |
title |
Quantum work for sudden quenches in Gaussian random Hamiltonians |
spellingShingle |
Quantum work for sudden quenches in Gaussian random Hamiltonians Arrais, Eric G. Quantum thermodynamics Random matrix theory Quantum work |
title_short |
Quantum work for sudden quenches in Gaussian random Hamiltonians |
title_full |
Quantum work for sudden quenches in Gaussian random Hamiltonians |
title_fullStr |
Quantum work for sudden quenches in Gaussian random Hamiltonians |
title_full_unstemmed |
Quantum work for sudden quenches in Gaussian random Hamiltonians |
title_sort |
Quantum work for sudden quenches in Gaussian random Hamiltonians |
dc.creator.none.fl_str_mv |
Arrais, Eric G. Wisniacki, Diego Ariel Céleri, Lucas C. De Almeida, Norton G. Roncaglia, Augusto Jose Toscano, Fabricio |
author |
Arrais, Eric G. |
author_facet |
Arrais, Eric G. Wisniacki, Diego Ariel Céleri, Lucas C. De Almeida, Norton G. Roncaglia, Augusto Jose Toscano, Fabricio |
author_role |
author |
author2 |
Wisniacki, Diego Ariel Céleri, Lucas C. De Almeida, Norton G. Roncaglia, Augusto Jose Toscano, Fabricio |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Quantum thermodynamics Random matrix theory Quantum work |
topic |
Quantum thermodynamics Random matrix theory Quantum work |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In the context of nonequilibrium quantum thermodynamics, variables like work behave stochastically. A particular definition of the work probability density function (pdf) for coherent quantum processes allows the verification of the quantum version of the celebrated fluctuation theorems, due to Jarzynski and Crooks, that apply when the system is driven away from an initial equilibrium thermal state. Such a particular pdf depends basically on the details of the initial and final Hamiltonians, on the temperature of the initial thermal state, and on how some external parameter is changed during the coherent process. Using random matrix theory we derive a simple analytic expression that describes the general behavior of the work characteristic function G(u), associated with this particular work pdf for sudden quenches, valid for all the traditional Gaussian ensembles of Hamiltonians matrices. This formula well describes the general behavior of G(u) calculated from single draws of the initial and final Hamiltonians in all ranges of temperatures. Fil: Arrais, Eric G.. Universidade Federal do Rio de Janeiro; Brasil Fil: Wisniacki, Diego Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Céleri, Lucas C.. Universidade Federal de Goiás; Brasil Fil: De Almeida, Norton G.. Universidade Federal de Goiás; Brasil Fil: Roncaglia, Augusto Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Toscano, Fabricio. Universidade Federal do Rio de Janeiro; Brasil |
description |
In the context of nonequilibrium quantum thermodynamics, variables like work behave stochastically. A particular definition of the work probability density function (pdf) for coherent quantum processes allows the verification of the quantum version of the celebrated fluctuation theorems, due to Jarzynski and Crooks, that apply when the system is driven away from an initial equilibrium thermal state. Such a particular pdf depends basically on the details of the initial and final Hamiltonians, on the temperature of the initial thermal state, and on how some external parameter is changed during the coherent process. Using random matrix theory we derive a simple analytic expression that describes the general behavior of the work characteristic function G(u), associated with this particular work pdf for sudden quenches, valid for all the traditional Gaussian ensembles of Hamiltonians matrices. This formula well describes the general behavior of G(u) calculated from single draws of the initial and final Hamiltonians in all ranges of temperatures. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/97210 Arrais, Eric G.; Wisniacki, Diego Ariel; Céleri, Lucas C.; De Almeida, Norton G.; Roncaglia, Augusto Jose; et al.; Quantum work for sudden quenches in Gaussian random Hamiltonians; American Physical Society; Physical Review E; 98; 1; 7-2018; 1-8; 012106 2470-0045 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/97210 |
identifier_str_mv |
Arrais, Eric G.; Wisniacki, Diego Ariel; Céleri, Lucas C.; De Almeida, Norton G.; Roncaglia, Augusto Jose; et al.; Quantum work for sudden quenches in Gaussian random Hamiltonians; American Physical Society; Physical Review E; 98; 1; 7-2018; 1-8; 012106 2470-0045 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.98.012106 info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.98.012106 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1802.10559 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269233624383488 |
score |
13.13397 |