Automated Speech Markers of Alzheimer Dementia: Test of Cross-Linguistic Generalizability

Autores
Pérez Toro, Paula Andrea; Ferrante, Franco Javier; Pérez, Gonzalo Nicolas; Tee, Boon Lead; de Leon, Jessica; Abbona, Cinthia Carolina; Schuster, Maria; Maier, Andreas; Slachevsky, Andrea; Gorno Tempini, Maria Luisa; Ibañez, Agustin Mariano; Orozco Arroyave, Juan Rafael; García, Adolfo Martín
Año de publicación
2025
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Background: Automated speech and language analysis (ASLA) is gaining momentum as a noninvasive, affordable, and scalable approach for the early detection of Alzheimer disease (AD). Nevertheless, the literature presents 2 notable limitations. First, many studies use computationally derived features that lack clinical interpretability. Second, a significant proportion of ASLA studies have been conducted exclusively in English speakers. These shortcomings reduce the utility and generalizability of existing findings. Objective: To address these gaps, we investigated whether interpretable linguistic features can reliably identify AD both within and across language boundaries, focusing on English- and Spanish-speaking patients and healthy controls (HCs). Methods: We analyzed speech recordings from 211 participants, encompassing 117 English speakers (58 patients with AD and 59 HCs) and 94 Spanish speakers (47 patients with AD and 47 HCs). Participants completed a validated picture description task from the Boston Diagnostic Aphasia Examination, eliciting natural speech under controlled conditions. Recordings were preprocessed and transcribed before extracting (1) speech timing features (eg, pause duration, speech segment ratios, and voice rate) and (2) lexico-semantic features (lexical category ratios, semantic granularity, and semantic variability). Machine learning classifiers were trained with data from English-speaking patients and HCs, and then tested (1) in a within-language setting (with English-speaking patients and HCs) and (2) in a between-language setting (with Spanish-speaking patients and HCs). Additionally, the features were used to predict cognitive functioning as measured by the Mini-Mental State Examination (MMSE). Results: In the within-language condition, combined speech timing and lexico-semantic features yielded maximal classification (area under the receiver operating characteristic curve [AUC]=0.88), outperforming single-feature models (AUC=0.79 for timing features; AUC=0.80 for lexico-semantic features). Timing features showed the strongest MMSE prediction (R=0.43, P<.001). In the between-language condition, speech timing features generalized well to Spanish speakers (AUC=0.75) and predicted Spanish-speaking patients’ MMSE scores (R=0.39, P<.001). Lexico-semantic features showed lower performance (AUC=0.64) and no significant MMSE prediction (R=–0.31, P=.05). The combined model did not improve results (AUC=0.65; R=0.04, P=.79). Conclusions: These results suggest that while both timing and lexico-semantic features are informative within the same language, only speech timing features demonstrate consistent performance across languages. By focusing on clinically interpretable features, this approach supports the development of clinically usable ASLA tools.
Fil: Pérez Toro, Paula Andrea. Universitat Erlangen Nuremberg; Alemania. Massachusetts General Hospital; Estados Unidos. Universidad de Antioquia; Colombia
Fil: Ferrante, Franco Javier. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de San Andrés; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina
Fil: Pérez, Gonzalo Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de San Andrés; Argentina
Fil: Tee, Boon Lead. Trinity College; Irlanda. University of California; Estados Unidos
Fil: de Leon, Jessica. University of California; Estados Unidos
Fil: Abbona, Cinthia Carolina. Universitat Erlangen Nuremberg; Alemania
Fil: Schuster, Maria. Ludwig Maximilians Universitat; Alemania
Fil: Maier, Andreas. Universitat Erlangen Nuremberg; Alemania
Fil: Slachevsky, Andrea. Universidad de Chile; Chile. Hospital del Salvador; Chile. Clínica Alemana; Chile
Fil: Gorno Tempini, Maria Luisa. University of California; Estados Unidos
Fil: Ibañez, Agustin Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de San Andrés; Argentina. University of California; Estados Unidos. Trinity College; Irlanda. Universidad Adolfo Ibañez; Chile
Fil: Orozco Arroyave, Juan Rafael. Universitat Erlangen Nuremberg; Alemania. Universidad de Antioquia; Colombia
Fil: García, Adolfo Martín. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de San Andrés; Argentina. University of California; Estados Unidos. Universidad de Santiago de Chile; Chile
Materia
Alzheimer's disease
Digital biomakers
Automated speech and language analysis
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/280525

id CONICETDig_29fd077f30157449df0d3678454dc6e9
oai_identifier_str oai:ri.conicet.gov.ar:11336/280525
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Automated Speech Markers of Alzheimer Dementia: Test of Cross-Linguistic GeneralizabilityPérez Toro, Paula AndreaFerrante, Franco JavierPérez, Gonzalo NicolasTee, Boon Leadde Leon, JessicaAbbona, Cinthia CarolinaSchuster, MariaMaier, AndreasSlachevsky, AndreaGorno Tempini, Maria LuisaIbañez, Agustin MarianoOrozco Arroyave, Juan RafaelGarcía, Adolfo MartínAlzheimer's diseaseDigital biomakersAutomated speech and language analysishttps://purl.org/becyt/ford/3.2https://purl.org/becyt/ford/3Background: Automated speech and language analysis (ASLA) is gaining momentum as a noninvasive, affordable, and scalable approach for the early detection of Alzheimer disease (AD). Nevertheless, the literature presents 2 notable limitations. First, many studies use computationally derived features that lack clinical interpretability. Second, a significant proportion of ASLA studies have been conducted exclusively in English speakers. These shortcomings reduce the utility and generalizability of existing findings. Objective: To address these gaps, we investigated whether interpretable linguistic features can reliably identify AD both within and across language boundaries, focusing on English- and Spanish-speaking patients and healthy controls (HCs). Methods: We analyzed speech recordings from 211 participants, encompassing 117 English speakers (58 patients with AD and 59 HCs) and 94 Spanish speakers (47 patients with AD and 47 HCs). Participants completed a validated picture description task from the Boston Diagnostic Aphasia Examination, eliciting natural speech under controlled conditions. Recordings were preprocessed and transcribed before extracting (1) speech timing features (eg, pause duration, speech segment ratios, and voice rate) and (2) lexico-semantic features (lexical category ratios, semantic granularity, and semantic variability). Machine learning classifiers were trained with data from English-speaking patients and HCs, and then tested (1) in a within-language setting (with English-speaking patients and HCs) and (2) in a between-language setting (with Spanish-speaking patients and HCs). Additionally, the features were used to predict cognitive functioning as measured by the Mini-Mental State Examination (MMSE). Results: In the within-language condition, combined speech timing and lexico-semantic features yielded maximal classification (area under the receiver operating characteristic curve [AUC]=0.88), outperforming single-feature models (AUC=0.79 for timing features; AUC=0.80 for lexico-semantic features). Timing features showed the strongest MMSE prediction (R=0.43, P<.001). In the between-language condition, speech timing features generalized well to Spanish speakers (AUC=0.75) and predicted Spanish-speaking patients’ MMSE scores (R=0.39, P<.001). Lexico-semantic features showed lower performance (AUC=0.64) and no significant MMSE prediction (R=–0.31, P=.05). The combined model did not improve results (AUC=0.65; R=0.04, P=.79). Conclusions: These results suggest that while both timing and lexico-semantic features are informative within the same language, only speech timing features demonstrate consistent performance across languages. By focusing on clinically interpretable features, this approach supports the development of clinically usable ASLA tools.Fil: Pérez Toro, Paula Andrea. Universitat Erlangen Nuremberg; Alemania. Massachusetts General Hospital; Estados Unidos. Universidad de Antioquia; ColombiaFil: Ferrante, Franco Javier. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de San Andrés; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería; ArgentinaFil: Pérez, Gonzalo Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de San Andrés; ArgentinaFil: Tee, Boon Lead. Trinity College; Irlanda. University of California; Estados UnidosFil: de Leon, Jessica. University of California; Estados UnidosFil: Abbona, Cinthia Carolina. Universitat Erlangen Nuremberg; AlemaniaFil: Schuster, Maria. Ludwig Maximilians Universitat; AlemaniaFil: Maier, Andreas. Universitat Erlangen Nuremberg; AlemaniaFil: Slachevsky, Andrea. Universidad de Chile; Chile. Hospital del Salvador; Chile. Clínica Alemana; ChileFil: Gorno Tempini, Maria Luisa. University of California; Estados UnidosFil: Ibañez, Agustin Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de San Andrés; Argentina. University of California; Estados Unidos. Trinity College; Irlanda. Universidad Adolfo Ibañez; ChileFil: Orozco Arroyave, Juan Rafael. Universitat Erlangen Nuremberg; Alemania. Universidad de Antioquia; ColombiaFil: García, Adolfo Martín. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de San Andrés; Argentina. University of California; Estados Unidos. Universidad de Santiago de Chile; ChileJournal Medical Internet Research2025-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/280525Pérez Toro, Paula Andrea; Ferrante, Franco Javier; Pérez, Gonzalo Nicolas; Tee, Boon Lead; de Leon, Jessica; et al.; Automated Speech Markers of Alzheimer Dementia: Test of Cross-Linguistic Generalizability; Journal Medical Internet Research; Journal Of Medical Internet Research; 27; 10-2025; 1-181438-8871CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.jmir.org/2025/1/e74200info:eu-repo/semantics/altIdentifier/doi/10.2196/74200info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2026-02-06T13:19:26Zoai:ri.conicet.gov.ar:11336/280525instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982026-02-06 13:19:26.566CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Automated Speech Markers of Alzheimer Dementia: Test of Cross-Linguistic Generalizability
title Automated Speech Markers of Alzheimer Dementia: Test of Cross-Linguistic Generalizability
spellingShingle Automated Speech Markers of Alzheimer Dementia: Test of Cross-Linguistic Generalizability
Pérez Toro, Paula Andrea
Alzheimer's disease
Digital biomakers
Automated speech and language analysis
title_short Automated Speech Markers of Alzheimer Dementia: Test of Cross-Linguistic Generalizability
title_full Automated Speech Markers of Alzheimer Dementia: Test of Cross-Linguistic Generalizability
title_fullStr Automated Speech Markers of Alzheimer Dementia: Test of Cross-Linguistic Generalizability
title_full_unstemmed Automated Speech Markers of Alzheimer Dementia: Test of Cross-Linguistic Generalizability
title_sort Automated Speech Markers of Alzheimer Dementia: Test of Cross-Linguistic Generalizability
dc.creator.none.fl_str_mv Pérez Toro, Paula Andrea
Ferrante, Franco Javier
Pérez, Gonzalo Nicolas
Tee, Boon Lead
de Leon, Jessica
Abbona, Cinthia Carolina
Schuster, Maria
Maier, Andreas
Slachevsky, Andrea
Gorno Tempini, Maria Luisa
Ibañez, Agustin Mariano
Orozco Arroyave, Juan Rafael
García, Adolfo Martín
author Pérez Toro, Paula Andrea
author_facet Pérez Toro, Paula Andrea
Ferrante, Franco Javier
Pérez, Gonzalo Nicolas
Tee, Boon Lead
de Leon, Jessica
Abbona, Cinthia Carolina
Schuster, Maria
Maier, Andreas
Slachevsky, Andrea
Gorno Tempini, Maria Luisa
Ibañez, Agustin Mariano
Orozco Arroyave, Juan Rafael
García, Adolfo Martín
author_role author
author2 Ferrante, Franco Javier
Pérez, Gonzalo Nicolas
Tee, Boon Lead
de Leon, Jessica
Abbona, Cinthia Carolina
Schuster, Maria
Maier, Andreas
Slachevsky, Andrea
Gorno Tempini, Maria Luisa
Ibañez, Agustin Mariano
Orozco Arroyave, Juan Rafael
García, Adolfo Martín
author2_role author
author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Alzheimer's disease
Digital biomakers
Automated speech and language analysis
topic Alzheimer's disease
Digital biomakers
Automated speech and language analysis
purl_subject.fl_str_mv https://purl.org/becyt/ford/3.2
https://purl.org/becyt/ford/3
dc.description.none.fl_txt_mv Background: Automated speech and language analysis (ASLA) is gaining momentum as a noninvasive, affordable, and scalable approach for the early detection of Alzheimer disease (AD). Nevertheless, the literature presents 2 notable limitations. First, many studies use computationally derived features that lack clinical interpretability. Second, a significant proportion of ASLA studies have been conducted exclusively in English speakers. These shortcomings reduce the utility and generalizability of existing findings. Objective: To address these gaps, we investigated whether interpretable linguistic features can reliably identify AD both within and across language boundaries, focusing on English- and Spanish-speaking patients and healthy controls (HCs). Methods: We analyzed speech recordings from 211 participants, encompassing 117 English speakers (58 patients with AD and 59 HCs) and 94 Spanish speakers (47 patients with AD and 47 HCs). Participants completed a validated picture description task from the Boston Diagnostic Aphasia Examination, eliciting natural speech under controlled conditions. Recordings were preprocessed and transcribed before extracting (1) speech timing features (eg, pause duration, speech segment ratios, and voice rate) and (2) lexico-semantic features (lexical category ratios, semantic granularity, and semantic variability). Machine learning classifiers were trained with data from English-speaking patients and HCs, and then tested (1) in a within-language setting (with English-speaking patients and HCs) and (2) in a between-language setting (with Spanish-speaking patients and HCs). Additionally, the features were used to predict cognitive functioning as measured by the Mini-Mental State Examination (MMSE). Results: In the within-language condition, combined speech timing and lexico-semantic features yielded maximal classification (area under the receiver operating characteristic curve [AUC]=0.88), outperforming single-feature models (AUC=0.79 for timing features; AUC=0.80 for lexico-semantic features). Timing features showed the strongest MMSE prediction (R=0.43, P<.001). In the between-language condition, speech timing features generalized well to Spanish speakers (AUC=0.75) and predicted Spanish-speaking patients’ MMSE scores (R=0.39, P<.001). Lexico-semantic features showed lower performance (AUC=0.64) and no significant MMSE prediction (R=–0.31, P=.05). The combined model did not improve results (AUC=0.65; R=0.04, P=.79). Conclusions: These results suggest that while both timing and lexico-semantic features are informative within the same language, only speech timing features demonstrate consistent performance across languages. By focusing on clinically interpretable features, this approach supports the development of clinically usable ASLA tools.
Fil: Pérez Toro, Paula Andrea. Universitat Erlangen Nuremberg; Alemania. Massachusetts General Hospital; Estados Unidos. Universidad de Antioquia; Colombia
Fil: Ferrante, Franco Javier. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de San Andrés; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina
Fil: Pérez, Gonzalo Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de San Andrés; Argentina
Fil: Tee, Boon Lead. Trinity College; Irlanda. University of California; Estados Unidos
Fil: de Leon, Jessica. University of California; Estados Unidos
Fil: Abbona, Cinthia Carolina. Universitat Erlangen Nuremberg; Alemania
Fil: Schuster, Maria. Ludwig Maximilians Universitat; Alemania
Fil: Maier, Andreas. Universitat Erlangen Nuremberg; Alemania
Fil: Slachevsky, Andrea. Universidad de Chile; Chile. Hospital del Salvador; Chile. Clínica Alemana; Chile
Fil: Gorno Tempini, Maria Luisa. University of California; Estados Unidos
Fil: Ibañez, Agustin Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de San Andrés; Argentina. University of California; Estados Unidos. Trinity College; Irlanda. Universidad Adolfo Ibañez; Chile
Fil: Orozco Arroyave, Juan Rafael. Universitat Erlangen Nuremberg; Alemania. Universidad de Antioquia; Colombia
Fil: García, Adolfo Martín. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de San Andrés; Argentina. University of California; Estados Unidos. Universidad de Santiago de Chile; Chile
description Background: Automated speech and language analysis (ASLA) is gaining momentum as a noninvasive, affordable, and scalable approach for the early detection of Alzheimer disease (AD). Nevertheless, the literature presents 2 notable limitations. First, many studies use computationally derived features that lack clinical interpretability. Second, a significant proportion of ASLA studies have been conducted exclusively in English speakers. These shortcomings reduce the utility and generalizability of existing findings. Objective: To address these gaps, we investigated whether interpretable linguistic features can reliably identify AD both within and across language boundaries, focusing on English- and Spanish-speaking patients and healthy controls (HCs). Methods: We analyzed speech recordings from 211 participants, encompassing 117 English speakers (58 patients with AD and 59 HCs) and 94 Spanish speakers (47 patients with AD and 47 HCs). Participants completed a validated picture description task from the Boston Diagnostic Aphasia Examination, eliciting natural speech under controlled conditions. Recordings were preprocessed and transcribed before extracting (1) speech timing features (eg, pause duration, speech segment ratios, and voice rate) and (2) lexico-semantic features (lexical category ratios, semantic granularity, and semantic variability). Machine learning classifiers were trained with data from English-speaking patients and HCs, and then tested (1) in a within-language setting (with English-speaking patients and HCs) and (2) in a between-language setting (with Spanish-speaking patients and HCs). Additionally, the features were used to predict cognitive functioning as measured by the Mini-Mental State Examination (MMSE). Results: In the within-language condition, combined speech timing and lexico-semantic features yielded maximal classification (area under the receiver operating characteristic curve [AUC]=0.88), outperforming single-feature models (AUC=0.79 for timing features; AUC=0.80 for lexico-semantic features). Timing features showed the strongest MMSE prediction (R=0.43, P<.001). In the between-language condition, speech timing features generalized well to Spanish speakers (AUC=0.75) and predicted Spanish-speaking patients’ MMSE scores (R=0.39, P<.001). Lexico-semantic features showed lower performance (AUC=0.64) and no significant MMSE prediction (R=–0.31, P=.05). The combined model did not improve results (AUC=0.65; R=0.04, P=.79). Conclusions: These results suggest that while both timing and lexico-semantic features are informative within the same language, only speech timing features demonstrate consistent performance across languages. By focusing on clinically interpretable features, this approach supports the development of clinically usable ASLA tools.
publishDate 2025
dc.date.none.fl_str_mv 2025-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/280525
Pérez Toro, Paula Andrea; Ferrante, Franco Javier; Pérez, Gonzalo Nicolas; Tee, Boon Lead; de Leon, Jessica; et al.; Automated Speech Markers of Alzheimer Dementia: Test of Cross-Linguistic Generalizability; Journal Medical Internet Research; Journal Of Medical Internet Research; 27; 10-2025; 1-18
1438-8871
CONICET Digital
CONICET
url http://hdl.handle.net/11336/280525
identifier_str_mv Pérez Toro, Paula Andrea; Ferrante, Franco Javier; Pérez, Gonzalo Nicolas; Tee, Boon Lead; de Leon, Jessica; et al.; Automated Speech Markers of Alzheimer Dementia: Test of Cross-Linguistic Generalizability; Journal Medical Internet Research; Journal Of Medical Internet Research; 27; 10-2025; 1-18
1438-8871
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.jmir.org/2025/1/e74200
info:eu-repo/semantics/altIdentifier/doi/10.2196/74200
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Journal Medical Internet Research
publisher.none.fl_str_mv Journal Medical Internet Research
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1856403479690477568
score 13.106097