Pattern and degree of individual brain atrophy predicts dementia onset in dominantly inherited Alzheimer's disease
- Autores
- Keret, Ophir; Staffaroni, Adam M.; Ringman, John M.; Cobigo, Yann; Goh, Sheng Yang M.; Wolf, Amy; Allen, Isabel Elaine; Salloway, Stephen; Chhatwal, Jasmeer; Brickman, Adam M.; Reyes Dumeyer, Dolly; Bateman, Randal J.; Benzinger, Tammie L.S.; Morris, John C.; Ances, Beau M.; Joseph Mathurin, Nelly; Perrin, Richard J.; Gordon, Brian A.; Levin, Johannes; Vöglein, Jonathan; Jucker, Mathias; la Fougère, Christian; Martins, Ralph N.; Sohrabi, Hamid R.; Taddei, Kevin; Villemagne, Victor L.; Schofield, Peter R.; Brooks, William S.; Fulham, Michael; Masters, Colin L.; Allegri, Ricardo Francisco
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Introduction: Asymptomatic and mildly symptomatic dominantly inherited Alzheimer's disease mutation carriers (DIAD-MC) are ideal candidates for preventative treatment trials aimed at delaying or preventing dementia onset. Brain atrophy is an early feature of DIAD-MC and could help predict risk for dementia during trial enrollment. Methods: We created a dementia risk score by entering standardized gray-matter volumes from 231 DIAD-MC into a logistic regression to classify participants with and without dementia. The score's predictive utility was assessed using Cox models and receiver operating curves on a separate group of 65 DIAD-MC followed longitudinally. Results: Our risk score separated asymptomatic versus demented DIAD-MC with 96.4% (standard error = 0.02) and predicted conversion to dementia at next visit (hazard ratio = 1.32, 95% confidence interval [CI: 1.15, 1.49]) and within 2 years (area under the curve = 90.3%, 95% CI [82.3%–98.2%]) and improved prediction beyond established methods based on familial age of onset. Discussion: Individualized risk scores based on brain atrophy could be useful for establishing enrollment criteria and stratifying DIAD-MC participants for prevention trials.
Fil: Keret, Ophir. University of California; Estados Unidos
Fil: Staffaroni, Adam M.. University of California; Estados Unidos
Fil: Ringman, John M.. University of Southern California; Estados Unidos
Fil: Cobigo, Yann. University of California; Estados Unidos
Fil: Goh, Sheng Yang M.. University of California; Estados Unidos
Fil: Wolf, Amy. University of California; Estados Unidos
Fil: Allen, Isabel Elaine. University of California; Estados Unidos
Fil: Salloway, Stephen. Brown University; Estados Unidos
Fil: Chhatwal, Jasmeer. Harvard Medical School; Estados Unidos
Fil: Brickman, Adam M.. Columbia University; Estados Unidos
Fil: Reyes Dumeyer, Dolly. Columbia University; Estados Unidos
Fil: Bateman, Randal J.. University of Washington; Estados Unidos
Fil: Benzinger, Tammie L.S.. University of Washington; Estados Unidos
Fil: Morris, John C.. University of Washington; Estados Unidos
Fil: Ances, Beau M.. University of Washington; Estados Unidos
Fil: Joseph Mathurin, Nelly. University of Washington; Estados Unidos
Fil: Perrin, Richard J.. University of Washington; Estados Unidos
Fil: Gordon, Brian A.. University of Washington; Estados Unidos
Fil: Levin, Johannes. German Center for Neurodegenerative Diseases; Alemania. Ludwig Maximilians Universitat; Alemania
Fil: Vöglein, Jonathan. Ludwig Maximilians Universitat; Alemania. German Center for Neurodegenerative Diseases; Alemania
Fil: Jucker, Mathias. German Center for Neurodegenerative Diseases; Alemania. Eberhard Karls Universität Tübingen; Alemania
Fil: la Fougère, Christian. Eberhard Karls Universität Tübingen; Alemania. German Center for Neurodegenerative Diseases; Alemania
Fil: Martins, Ralph N.. Cooperative Research Centres Australia; Australia. University of Western Australia; Australia. Edith Cowan University; Australia. Australian Alzheimer's Research Foundation; Australia. Macquarie University; Australia
Fil: Sohrabi, Hamid R.. University of Western Australia; Australia. Macquarie University; Australia. Australian Alzheimer's Research Foundation; Australia. Cooperative Research Centres Australia; Australia. Edith Cowan University; Australia
Fil: Taddei, Kevin. Australian Alzheimer's Research Foundation; Australia. Edith Cowan University; Australia
Fil: Villemagne, Victor L.. Austin Health; Australia
Fil: Schofield, Peter R.. Neuroscience Research Australia; Australia. Unsw Medicine; Australia
Fil: Brooks, William S.. Neuroscience Research Australia; Australia. Unsw Medicine; Australia
Fil: Fulham, Michael. Royal Prince Alfred Hospital; Australia
Fil: Masters, Colin L.. University of Melbourne; Australia
Fil: Allegri, Ricardo Francisco. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia. Instituto de Neurociencias - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Neurociencias; Argentina - Materia
-
AUTOSOMAL DOMINANT ALZHEIMER'S DISEASE
BRAIN ATROPHY
DOMINANTLY INHERITED ALZHEIMER NETWORK
PRECLINICAL ALZHEIMER'S DISEASE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/211950
Ver los metadatos del registro completo
id |
CONICETDig_dfb9bbbd9e2b4564623bff0679bc3041 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/211950 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Pattern and degree of individual brain atrophy predicts dementia onset in dominantly inherited Alzheimer's diseaseKeret, OphirStaffaroni, Adam M.Ringman, John M.Cobigo, YannGoh, Sheng Yang M.Wolf, AmyAllen, Isabel ElaineSalloway, StephenChhatwal, JasmeerBrickman, Adam M.Reyes Dumeyer, DollyBateman, Randal J.Benzinger, Tammie L.S.Morris, John C.Ances, Beau M.Joseph Mathurin, NellyPerrin, Richard J.Gordon, Brian A.Levin, JohannesVöglein, JonathanJucker, Mathiasla Fougère, ChristianMartins, Ralph N.Sohrabi, Hamid R.Taddei, KevinVillemagne, Victor L.Schofield, Peter R.Brooks, William S.Fulham, MichaelMasters, Colin L.Allegri, Ricardo FranciscoAUTOSOMAL DOMINANT ALZHEIMER'S DISEASEBRAIN ATROPHYDOMINANTLY INHERITED ALZHEIMER NETWORKPRECLINICAL ALZHEIMER'S DISEASEhttps://purl.org/becyt/ford/3.2https://purl.org/becyt/ford/3Introduction: Asymptomatic and mildly symptomatic dominantly inherited Alzheimer's disease mutation carriers (DIAD-MC) are ideal candidates for preventative treatment trials aimed at delaying or preventing dementia onset. Brain atrophy is an early feature of DIAD-MC and could help predict risk for dementia during trial enrollment. Methods: We created a dementia risk score by entering standardized gray-matter volumes from 231 DIAD-MC into a logistic regression to classify participants with and without dementia. The score's predictive utility was assessed using Cox models and receiver operating curves on a separate group of 65 DIAD-MC followed longitudinally. Results: Our risk score separated asymptomatic versus demented DIAD-MC with 96.4% (standard error = 0.02) and predicted conversion to dementia at next visit (hazard ratio = 1.32, 95% confidence interval [CI: 1.15, 1.49]) and within 2 years (area under the curve = 90.3%, 95% CI [82.3%–98.2%]) and improved prediction beyond established methods based on familial age of onset. Discussion: Individualized risk scores based on brain atrophy could be useful for establishing enrollment criteria and stratifying DIAD-MC participants for prevention trials.Fil: Keret, Ophir. University of California; Estados UnidosFil: Staffaroni, Adam M.. University of California; Estados UnidosFil: Ringman, John M.. University of Southern California; Estados UnidosFil: Cobigo, Yann. University of California; Estados UnidosFil: Goh, Sheng Yang M.. University of California; Estados UnidosFil: Wolf, Amy. University of California; Estados UnidosFil: Allen, Isabel Elaine. University of California; Estados UnidosFil: Salloway, Stephen. Brown University; Estados UnidosFil: Chhatwal, Jasmeer. Harvard Medical School; Estados UnidosFil: Brickman, Adam M.. Columbia University; Estados UnidosFil: Reyes Dumeyer, Dolly. Columbia University; Estados UnidosFil: Bateman, Randal J.. University of Washington; Estados UnidosFil: Benzinger, Tammie L.S.. University of Washington; Estados UnidosFil: Morris, John C.. University of Washington; Estados UnidosFil: Ances, Beau M.. University of Washington; Estados UnidosFil: Joseph Mathurin, Nelly. University of Washington; Estados UnidosFil: Perrin, Richard J.. University of Washington; Estados UnidosFil: Gordon, Brian A.. University of Washington; Estados UnidosFil: Levin, Johannes. German Center for Neurodegenerative Diseases; Alemania. Ludwig Maximilians Universitat; AlemaniaFil: Vöglein, Jonathan. Ludwig Maximilians Universitat; Alemania. German Center for Neurodegenerative Diseases; AlemaniaFil: Jucker, Mathias. German Center for Neurodegenerative Diseases; Alemania. Eberhard Karls Universität Tübingen; AlemaniaFil: la Fougère, Christian. Eberhard Karls Universität Tübingen; Alemania. German Center for Neurodegenerative Diseases; AlemaniaFil: Martins, Ralph N.. Cooperative Research Centres Australia; Australia. University of Western Australia; Australia. Edith Cowan University; Australia. Australian Alzheimer's Research Foundation; Australia. Macquarie University; AustraliaFil: Sohrabi, Hamid R.. University of Western Australia; Australia. Macquarie University; Australia. Australian Alzheimer's Research Foundation; Australia. Cooperative Research Centres Australia; Australia. Edith Cowan University; AustraliaFil: Taddei, Kevin. Australian Alzheimer's Research Foundation; Australia. Edith Cowan University; AustraliaFil: Villemagne, Victor L.. Austin Health; AustraliaFil: Schofield, Peter R.. Neuroscience Research Australia; Australia. Unsw Medicine; AustraliaFil: Brooks, William S.. Neuroscience Research Australia; Australia. Unsw Medicine; AustraliaFil: Fulham, Michael. Royal Prince Alfred Hospital; AustraliaFil: Masters, Colin L.. University of Melbourne; AustraliaFil: Allegri, Ricardo Francisco. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia. Instituto de Neurociencias - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Neurociencias; ArgentinaJohn Wiley & Sons2021-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/211950Keret, Ophir; Staffaroni, Adam M.; Ringman, John M.; Cobigo, Yann; Goh, Sheng Yang M.; et al.; Pattern and degree of individual brain atrophy predicts dementia onset in dominantly inherited Alzheimer's disease; John Wiley & Sons; Alzheimers & Dementia; 13; 1; 6-2021; 1-111552-52602352-8729CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1002/dad2.12197info:eu-repo/semantics/altIdentifier/url/https://alz-journals.onlinelibrary.wiley.com/doi/10.1002/dad2.12197info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:03:07Zoai:ri.conicet.gov.ar:11336/211950instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:03:08.139CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Pattern and degree of individual brain atrophy predicts dementia onset in dominantly inherited Alzheimer's disease |
title |
Pattern and degree of individual brain atrophy predicts dementia onset in dominantly inherited Alzheimer's disease |
spellingShingle |
Pattern and degree of individual brain atrophy predicts dementia onset in dominantly inherited Alzheimer's disease Keret, Ophir AUTOSOMAL DOMINANT ALZHEIMER'S DISEASE BRAIN ATROPHY DOMINANTLY INHERITED ALZHEIMER NETWORK PRECLINICAL ALZHEIMER'S DISEASE |
title_short |
Pattern and degree of individual brain atrophy predicts dementia onset in dominantly inherited Alzheimer's disease |
title_full |
Pattern and degree of individual brain atrophy predicts dementia onset in dominantly inherited Alzheimer's disease |
title_fullStr |
Pattern and degree of individual brain atrophy predicts dementia onset in dominantly inherited Alzheimer's disease |
title_full_unstemmed |
Pattern and degree of individual brain atrophy predicts dementia onset in dominantly inherited Alzheimer's disease |
title_sort |
Pattern and degree of individual brain atrophy predicts dementia onset in dominantly inherited Alzheimer's disease |
dc.creator.none.fl_str_mv |
Keret, Ophir Staffaroni, Adam M. Ringman, John M. Cobigo, Yann Goh, Sheng Yang M. Wolf, Amy Allen, Isabel Elaine Salloway, Stephen Chhatwal, Jasmeer Brickman, Adam M. Reyes Dumeyer, Dolly Bateman, Randal J. Benzinger, Tammie L.S. Morris, John C. Ances, Beau M. Joseph Mathurin, Nelly Perrin, Richard J. Gordon, Brian A. Levin, Johannes Vöglein, Jonathan Jucker, Mathias la Fougère, Christian Martins, Ralph N. Sohrabi, Hamid R. Taddei, Kevin Villemagne, Victor L. Schofield, Peter R. Brooks, William S. Fulham, Michael Masters, Colin L. Allegri, Ricardo Francisco |
author |
Keret, Ophir |
author_facet |
Keret, Ophir Staffaroni, Adam M. Ringman, John M. Cobigo, Yann Goh, Sheng Yang M. Wolf, Amy Allen, Isabel Elaine Salloway, Stephen Chhatwal, Jasmeer Brickman, Adam M. Reyes Dumeyer, Dolly Bateman, Randal J. Benzinger, Tammie L.S. Morris, John C. Ances, Beau M. Joseph Mathurin, Nelly Perrin, Richard J. Gordon, Brian A. Levin, Johannes Vöglein, Jonathan Jucker, Mathias la Fougère, Christian Martins, Ralph N. Sohrabi, Hamid R. Taddei, Kevin Villemagne, Victor L. Schofield, Peter R. Brooks, William S. Fulham, Michael Masters, Colin L. Allegri, Ricardo Francisco |
author_role |
author |
author2 |
Staffaroni, Adam M. Ringman, John M. Cobigo, Yann Goh, Sheng Yang M. Wolf, Amy Allen, Isabel Elaine Salloway, Stephen Chhatwal, Jasmeer Brickman, Adam M. Reyes Dumeyer, Dolly Bateman, Randal J. Benzinger, Tammie L.S. Morris, John C. Ances, Beau M. Joseph Mathurin, Nelly Perrin, Richard J. Gordon, Brian A. Levin, Johannes Vöglein, Jonathan Jucker, Mathias la Fougère, Christian Martins, Ralph N. Sohrabi, Hamid R. Taddei, Kevin Villemagne, Victor L. Schofield, Peter R. Brooks, William S. Fulham, Michael Masters, Colin L. Allegri, Ricardo Francisco |
author2_role |
author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author |
dc.subject.none.fl_str_mv |
AUTOSOMAL DOMINANT ALZHEIMER'S DISEASE BRAIN ATROPHY DOMINANTLY INHERITED ALZHEIMER NETWORK PRECLINICAL ALZHEIMER'S DISEASE |
topic |
AUTOSOMAL DOMINANT ALZHEIMER'S DISEASE BRAIN ATROPHY DOMINANTLY INHERITED ALZHEIMER NETWORK PRECLINICAL ALZHEIMER'S DISEASE |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/3.2 https://purl.org/becyt/ford/3 |
dc.description.none.fl_txt_mv |
Introduction: Asymptomatic and mildly symptomatic dominantly inherited Alzheimer's disease mutation carriers (DIAD-MC) are ideal candidates for preventative treatment trials aimed at delaying or preventing dementia onset. Brain atrophy is an early feature of DIAD-MC and could help predict risk for dementia during trial enrollment. Methods: We created a dementia risk score by entering standardized gray-matter volumes from 231 DIAD-MC into a logistic regression to classify participants with and without dementia. The score's predictive utility was assessed using Cox models and receiver operating curves on a separate group of 65 DIAD-MC followed longitudinally. Results: Our risk score separated asymptomatic versus demented DIAD-MC with 96.4% (standard error = 0.02) and predicted conversion to dementia at next visit (hazard ratio = 1.32, 95% confidence interval [CI: 1.15, 1.49]) and within 2 years (area under the curve = 90.3%, 95% CI [82.3%–98.2%]) and improved prediction beyond established methods based on familial age of onset. Discussion: Individualized risk scores based on brain atrophy could be useful for establishing enrollment criteria and stratifying DIAD-MC participants for prevention trials. Fil: Keret, Ophir. University of California; Estados Unidos Fil: Staffaroni, Adam M.. University of California; Estados Unidos Fil: Ringman, John M.. University of Southern California; Estados Unidos Fil: Cobigo, Yann. University of California; Estados Unidos Fil: Goh, Sheng Yang M.. University of California; Estados Unidos Fil: Wolf, Amy. University of California; Estados Unidos Fil: Allen, Isabel Elaine. University of California; Estados Unidos Fil: Salloway, Stephen. Brown University; Estados Unidos Fil: Chhatwal, Jasmeer. Harvard Medical School; Estados Unidos Fil: Brickman, Adam M.. Columbia University; Estados Unidos Fil: Reyes Dumeyer, Dolly. Columbia University; Estados Unidos Fil: Bateman, Randal J.. University of Washington; Estados Unidos Fil: Benzinger, Tammie L.S.. University of Washington; Estados Unidos Fil: Morris, John C.. University of Washington; Estados Unidos Fil: Ances, Beau M.. University of Washington; Estados Unidos Fil: Joseph Mathurin, Nelly. University of Washington; Estados Unidos Fil: Perrin, Richard J.. University of Washington; Estados Unidos Fil: Gordon, Brian A.. University of Washington; Estados Unidos Fil: Levin, Johannes. German Center for Neurodegenerative Diseases; Alemania. Ludwig Maximilians Universitat; Alemania Fil: Vöglein, Jonathan. Ludwig Maximilians Universitat; Alemania. German Center for Neurodegenerative Diseases; Alemania Fil: Jucker, Mathias. German Center for Neurodegenerative Diseases; Alemania. Eberhard Karls Universität Tübingen; Alemania Fil: la Fougère, Christian. Eberhard Karls Universität Tübingen; Alemania. German Center for Neurodegenerative Diseases; Alemania Fil: Martins, Ralph N.. Cooperative Research Centres Australia; Australia. University of Western Australia; Australia. Edith Cowan University; Australia. Australian Alzheimer's Research Foundation; Australia. Macquarie University; Australia Fil: Sohrabi, Hamid R.. University of Western Australia; Australia. Macquarie University; Australia. Australian Alzheimer's Research Foundation; Australia. Cooperative Research Centres Australia; Australia. Edith Cowan University; Australia Fil: Taddei, Kevin. Australian Alzheimer's Research Foundation; Australia. Edith Cowan University; Australia Fil: Villemagne, Victor L.. Austin Health; Australia Fil: Schofield, Peter R.. Neuroscience Research Australia; Australia. Unsw Medicine; Australia Fil: Brooks, William S.. Neuroscience Research Australia; Australia. Unsw Medicine; Australia Fil: Fulham, Michael. Royal Prince Alfred Hospital; Australia Fil: Masters, Colin L.. University of Melbourne; Australia Fil: Allegri, Ricardo Francisco. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia. Instituto de Neurociencias - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Neurociencias; Argentina |
description |
Introduction: Asymptomatic and mildly symptomatic dominantly inherited Alzheimer's disease mutation carriers (DIAD-MC) are ideal candidates for preventative treatment trials aimed at delaying or preventing dementia onset. Brain atrophy is an early feature of DIAD-MC and could help predict risk for dementia during trial enrollment. Methods: We created a dementia risk score by entering standardized gray-matter volumes from 231 DIAD-MC into a logistic regression to classify participants with and without dementia. The score's predictive utility was assessed using Cox models and receiver operating curves on a separate group of 65 DIAD-MC followed longitudinally. Results: Our risk score separated asymptomatic versus demented DIAD-MC with 96.4% (standard error = 0.02) and predicted conversion to dementia at next visit (hazard ratio = 1.32, 95% confidence interval [CI: 1.15, 1.49]) and within 2 years (area under the curve = 90.3%, 95% CI [82.3%–98.2%]) and improved prediction beyond established methods based on familial age of onset. Discussion: Individualized risk scores based on brain atrophy could be useful for establishing enrollment criteria and stratifying DIAD-MC participants for prevention trials. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/211950 Keret, Ophir; Staffaroni, Adam M.; Ringman, John M.; Cobigo, Yann; Goh, Sheng Yang M.; et al.; Pattern and degree of individual brain atrophy predicts dementia onset in dominantly inherited Alzheimer's disease; John Wiley & Sons; Alzheimers & Dementia; 13; 1; 6-2021; 1-11 1552-5260 2352-8729 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/211950 |
identifier_str_mv |
Keret, Ophir; Staffaroni, Adam M.; Ringman, John M.; Cobigo, Yann; Goh, Sheng Yang M.; et al.; Pattern and degree of individual brain atrophy predicts dementia onset in dominantly inherited Alzheimer's disease; John Wiley & Sons; Alzheimers & Dementia; 13; 1; 6-2021; 1-11 1552-5260 2352-8729 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1002/dad2.12197 info:eu-repo/semantics/altIdentifier/url/https://alz-journals.onlinelibrary.wiley.com/doi/10.1002/dad2.12197 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
John Wiley & Sons |
publisher.none.fl_str_mv |
John Wiley & Sons |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269783831085056 |
score |
13.13397 |