Automated text-level semantic markers of Alzheimer's disease
- Autores
- Sanz, Camila; Carrillo, Facundo; Slachevsky, Andrea; Forno, Gonzalo; Gorno Tempini, María L.; Villagra, Roque; Ibañez, Agustin Mariano; Tagliazucchi, Enzo Rodolfo; García, Adolfo Martín
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- INTRODUCTION: Automated speech analysis has emerged as a scalable, cost-effective tool to identify persons with Alzheimer?s disease (AD). Yet, most research is undermined by low interpretability and specificity. METHODS: Combining statistical and machine learning analyses of natural speech data, we aimed to discriminate AD dementia (ADD) patients from healthy controls (HCs) based on automated measures of domains typically affected in AD: semantic granularity (coarseness of concepts) and ongoing semantic variability (conceptual closeness of successive words). To test for specificity, we replicated the analyses on Parkinson?s disease (PD) patients. RESULTS: Relative to controls, ADD (but not PD) patients exhibited significant differences in both measures. Also, these features robustly classified between ADD patients and HCs (AUC = 0.8), yielding near-chance classification between PD patients and HCs (AUC = 0.65). DISCUSSION: Automated discourse-level semantic analyses can reveal objective, interpretable, and specific markers of ADD, bridging well-established neuropsychological targets with digital assessment tools.
Fil: Sanz, Camila. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Carrillo, Facundo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Slachevsky, Andrea. Universidad de Chile; Chile
Fil: Forno, Gonzalo. Universidad de Chile; Chile. Universidad de Barcelona; España
Fil: Gorno Tempini, María L.. University of California; Estados Unidos
Fil: Villagra, Roque. Universidad de Chile; Chile
Fil: Ibañez, Agustin Mariano. Universidad Adolfo Ibañez; Chile. Universidad de San Andrés; Argentina. University of California; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Tagliazucchi, Enzo Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: García, Adolfo Martín. Universidad de San Andrés; Argentina. Universidad Nacional de Cuyo. Facultad de Educación Elemental y Especial; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
ALZHEIMER'S DISEASE DEMENTIA
AUTOMATED SPEECH ANALYSIS
SEMANTIC GRANULARITY
SEMANTIC VARIABILITY
PARKINSON'S DISEASE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/161127
Ver los metadatos del registro completo
id |
CONICETDig_b1a22b844b889aa4a644e1f7cd9e98f8 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/161127 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Automated text-level semantic markers of Alzheimer's diseaseSanz, CamilaCarrillo, FacundoSlachevsky, AndreaForno, GonzaloGorno Tempini, María L.Villagra, RoqueIbañez, Agustin MarianoTagliazucchi, Enzo RodolfoGarcía, Adolfo MartínALZHEIMER'S DISEASE DEMENTIAAUTOMATED SPEECH ANALYSISSEMANTIC GRANULARITYSEMANTIC VARIABILITYPARKINSON'S DISEASEhttps://purl.org/becyt/ford/6.2https://purl.org/becyt/ford/6https://purl.org/becyt/ford/5.1https://purl.org/becyt/ford/5INTRODUCTION: Automated speech analysis has emerged as a scalable, cost-effective tool to identify persons with Alzheimer?s disease (AD). Yet, most research is undermined by low interpretability and specificity. METHODS: Combining statistical and machine learning analyses of natural speech data, we aimed to discriminate AD dementia (ADD) patients from healthy controls (HCs) based on automated measures of domains typically affected in AD: semantic granularity (coarseness of concepts) and ongoing semantic variability (conceptual closeness of successive words). To test for specificity, we replicated the analyses on Parkinson?s disease (PD) patients. RESULTS: Relative to controls, ADD (but not PD) patients exhibited significant differences in both measures. Also, these features robustly classified between ADD patients and HCs (AUC = 0.8), yielding near-chance classification between PD patients and HCs (AUC = 0.65). DISCUSSION: Automated discourse-level semantic analyses can reveal objective, interpretable, and specific markers of ADD, bridging well-established neuropsychological targets with digital assessment tools.Fil: Sanz, Camila. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Carrillo, Facundo. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Slachevsky, Andrea. Universidad de Chile; ChileFil: Forno, Gonzalo. Universidad de Chile; Chile. Universidad de Barcelona; EspañaFil: Gorno Tempini, María L.. University of California; Estados UnidosFil: Villagra, Roque. Universidad de Chile; ChileFil: Ibañez, Agustin Mariano. Universidad Adolfo Ibañez; Chile. Universidad de San Andrés; Argentina. University of California; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Tagliazucchi, Enzo Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: García, Adolfo Martín. Universidad de San Andrés; Argentina. Universidad Nacional de Cuyo. Facultad de Educación Elemental y Especial; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaWiley2022-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/161127Sanz, Camila; Carrillo, Facundo; Slachevsky, Andrea; Forno, Gonzalo; Gorno Tempini, María L.; et al.; Automated text-level semantic markers of Alzheimer's disease; Wiley; Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring; 14; 1; 1-2022; 1-102352-8729CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://alz-journals.onlinelibrary.wiley.com/doi/10.1002/dad2.12276info:eu-repo/semantics/altIdentifier/doi/10.1002/dad2.12276info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:06:42Zoai:ri.conicet.gov.ar:11336/161127instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:06:42.818CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Automated text-level semantic markers of Alzheimer's disease |
title |
Automated text-level semantic markers of Alzheimer's disease |
spellingShingle |
Automated text-level semantic markers of Alzheimer's disease Sanz, Camila ALZHEIMER'S DISEASE DEMENTIA AUTOMATED SPEECH ANALYSIS SEMANTIC GRANULARITY SEMANTIC VARIABILITY PARKINSON'S DISEASE |
title_short |
Automated text-level semantic markers of Alzheimer's disease |
title_full |
Automated text-level semantic markers of Alzheimer's disease |
title_fullStr |
Automated text-level semantic markers of Alzheimer's disease |
title_full_unstemmed |
Automated text-level semantic markers of Alzheimer's disease |
title_sort |
Automated text-level semantic markers of Alzheimer's disease |
dc.creator.none.fl_str_mv |
Sanz, Camila Carrillo, Facundo Slachevsky, Andrea Forno, Gonzalo Gorno Tempini, María L. Villagra, Roque Ibañez, Agustin Mariano Tagliazucchi, Enzo Rodolfo García, Adolfo Martín |
author |
Sanz, Camila |
author_facet |
Sanz, Camila Carrillo, Facundo Slachevsky, Andrea Forno, Gonzalo Gorno Tempini, María L. Villagra, Roque Ibañez, Agustin Mariano Tagliazucchi, Enzo Rodolfo García, Adolfo Martín |
author_role |
author |
author2 |
Carrillo, Facundo Slachevsky, Andrea Forno, Gonzalo Gorno Tempini, María L. Villagra, Roque Ibañez, Agustin Mariano Tagliazucchi, Enzo Rodolfo García, Adolfo Martín |
author2_role |
author author author author author author author author |
dc.subject.none.fl_str_mv |
ALZHEIMER'S DISEASE DEMENTIA AUTOMATED SPEECH ANALYSIS SEMANTIC GRANULARITY SEMANTIC VARIABILITY PARKINSON'S DISEASE |
topic |
ALZHEIMER'S DISEASE DEMENTIA AUTOMATED SPEECH ANALYSIS SEMANTIC GRANULARITY SEMANTIC VARIABILITY PARKINSON'S DISEASE |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/6.2 https://purl.org/becyt/ford/6 https://purl.org/becyt/ford/5.1 https://purl.org/becyt/ford/5 |
dc.description.none.fl_txt_mv |
INTRODUCTION: Automated speech analysis has emerged as a scalable, cost-effective tool to identify persons with Alzheimer?s disease (AD). Yet, most research is undermined by low interpretability and specificity. METHODS: Combining statistical and machine learning analyses of natural speech data, we aimed to discriminate AD dementia (ADD) patients from healthy controls (HCs) based on automated measures of domains typically affected in AD: semantic granularity (coarseness of concepts) and ongoing semantic variability (conceptual closeness of successive words). To test for specificity, we replicated the analyses on Parkinson?s disease (PD) patients. RESULTS: Relative to controls, ADD (but not PD) patients exhibited significant differences in both measures. Also, these features robustly classified between ADD patients and HCs (AUC = 0.8), yielding near-chance classification between PD patients and HCs (AUC = 0.65). DISCUSSION: Automated discourse-level semantic analyses can reveal objective, interpretable, and specific markers of ADD, bridging well-established neuropsychological targets with digital assessment tools. Fil: Sanz, Camila. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Carrillo, Facundo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Slachevsky, Andrea. Universidad de Chile; Chile Fil: Forno, Gonzalo. Universidad de Chile; Chile. Universidad de Barcelona; España Fil: Gorno Tempini, María L.. University of California; Estados Unidos Fil: Villagra, Roque. Universidad de Chile; Chile Fil: Ibañez, Agustin Mariano. Universidad Adolfo Ibañez; Chile. Universidad de San Andrés; Argentina. University of California; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Tagliazucchi, Enzo Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: García, Adolfo Martín. Universidad de San Andrés; Argentina. Universidad Nacional de Cuyo. Facultad de Educación Elemental y Especial; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
INTRODUCTION: Automated speech analysis has emerged as a scalable, cost-effective tool to identify persons with Alzheimer?s disease (AD). Yet, most research is undermined by low interpretability and specificity. METHODS: Combining statistical and machine learning analyses of natural speech data, we aimed to discriminate AD dementia (ADD) patients from healthy controls (HCs) based on automated measures of domains typically affected in AD: semantic granularity (coarseness of concepts) and ongoing semantic variability (conceptual closeness of successive words). To test for specificity, we replicated the analyses on Parkinson?s disease (PD) patients. RESULTS: Relative to controls, ADD (but not PD) patients exhibited significant differences in both measures. Also, these features robustly classified between ADD patients and HCs (AUC = 0.8), yielding near-chance classification between PD patients and HCs (AUC = 0.65). DISCUSSION: Automated discourse-level semantic analyses can reveal objective, interpretable, and specific markers of ADD, bridging well-established neuropsychological targets with digital assessment tools. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/161127 Sanz, Camila; Carrillo, Facundo; Slachevsky, Andrea; Forno, Gonzalo; Gorno Tempini, María L.; et al.; Automated text-level semantic markers of Alzheimer's disease; Wiley; Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring; 14; 1; 1-2022; 1-10 2352-8729 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/161127 |
identifier_str_mv |
Sanz, Camila; Carrillo, Facundo; Slachevsky, Andrea; Forno, Gonzalo; Gorno Tempini, María L.; et al.; Automated text-level semantic markers of Alzheimer's disease; Wiley; Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring; 14; 1; 1-2022; 1-10 2352-8729 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://alz-journals.onlinelibrary.wiley.com/doi/10.1002/dad2.12276 info:eu-repo/semantics/altIdentifier/doi/10.1002/dad2.12276 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Wiley |
publisher.none.fl_str_mv |
Wiley |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613918515789824 |
score |
13.070432 |