AWSC: An approach to Web service classification based on machine learning techniques
- Autores
- Crasso, Marco Patricio; Zunino Suarez, Alejandro Octavio; Campo, Marcelo Ricardo
- Año de publicación
- 2008
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A Web service is a Web accessible software that can be published, located and invoked by using standard Web protocols. Automatically determining the category of a Web service, from several pre-defined categories, is an important problem with many applications such as service discovery, semantic annotation and service matching. This paper describes AWSC (Automatic Web Service Classification), an automatic classifier of Web service descriptions. AWSC exploits the connections between the category of a Web service and the information commonly found in standard descriptions. In addition, AWSC bridges different styles for describing services by combining text mining and machine learning techniques. Experimental evaluations show that this combination helps our classification system at improving its precision. In addition, we report an experimental comparison of AWSC with a related work.
Fil: Crasso, Marco Patricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
Fil: Zunino Suarez, Alejandro Octavio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
Fil: Campo, Marcelo Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina - Materia
-
Web services
Text classification
Machine learning - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/244807
Ver los metadatos del registro completo
id |
CONICETDig_fc7cfcbcd0101f64828b596508606b37 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/244807 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
AWSC: An approach to Web service classification based on machine learning techniquesCrasso, Marco PatricioZunino Suarez, Alejandro OctavioCampo, Marcelo RicardoWeb servicesText classificationMachine learninghttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1A Web service is a Web accessible software that can be published, located and invoked by using standard Web protocols. Automatically determining the category of a Web service, from several pre-defined categories, is an important problem with many applications such as service discovery, semantic annotation and service matching. This paper describes AWSC (Automatic Web Service Classification), an automatic classifier of Web service descriptions. AWSC exploits the connections between the category of a Web service and the information commonly found in standard descriptions. In addition, AWSC bridges different styles for describing services by combining text mining and machine learning techniques. Experimental evaluations show that this combination helps our classification system at improving its precision. In addition, we report an experimental comparison of AWSC with a related work.Fil: Crasso, Marco Patricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaFil: Zunino Suarez, Alejandro Octavio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaFil: Campo, Marcelo Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaSociedad Iberoamericana de Inteligencia Artificial2008-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/244807Crasso, Marco Patricio; Zunino Suarez, Alejandro Octavio; Campo, Marcelo Ricardo; AWSC: An approach to Web service classification based on machine learning techniques; Sociedad Iberoamericana de Inteligencia Artificial; Inteligencia Artificial; 12; 37; 6-2008; 25-361988-3064CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://journal.iberamia.org/public/Vol.1-14.html#2008info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:43:09Zoai:ri.conicet.gov.ar:11336/244807instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:43:09.637CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
AWSC: An approach to Web service classification based on machine learning techniques |
title |
AWSC: An approach to Web service classification based on machine learning techniques |
spellingShingle |
AWSC: An approach to Web service classification based on machine learning techniques Crasso, Marco Patricio Web services Text classification Machine learning |
title_short |
AWSC: An approach to Web service classification based on machine learning techniques |
title_full |
AWSC: An approach to Web service classification based on machine learning techniques |
title_fullStr |
AWSC: An approach to Web service classification based on machine learning techniques |
title_full_unstemmed |
AWSC: An approach to Web service classification based on machine learning techniques |
title_sort |
AWSC: An approach to Web service classification based on machine learning techniques |
dc.creator.none.fl_str_mv |
Crasso, Marco Patricio Zunino Suarez, Alejandro Octavio Campo, Marcelo Ricardo |
author |
Crasso, Marco Patricio |
author_facet |
Crasso, Marco Patricio Zunino Suarez, Alejandro Octavio Campo, Marcelo Ricardo |
author_role |
author |
author2 |
Zunino Suarez, Alejandro Octavio Campo, Marcelo Ricardo |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Web services Text classification Machine learning |
topic |
Web services Text classification Machine learning |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
A Web service is a Web accessible software that can be published, located and invoked by using standard Web protocols. Automatically determining the category of a Web service, from several pre-defined categories, is an important problem with many applications such as service discovery, semantic annotation and service matching. This paper describes AWSC (Automatic Web Service Classification), an automatic classifier of Web service descriptions. AWSC exploits the connections between the category of a Web service and the information commonly found in standard descriptions. In addition, AWSC bridges different styles for describing services by combining text mining and machine learning techniques. Experimental evaluations show that this combination helps our classification system at improving its precision. In addition, we report an experimental comparison of AWSC with a related work. Fil: Crasso, Marco Patricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina Fil: Zunino Suarez, Alejandro Octavio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina Fil: Campo, Marcelo Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina |
description |
A Web service is a Web accessible software that can be published, located and invoked by using standard Web protocols. Automatically determining the category of a Web service, from several pre-defined categories, is an important problem with many applications such as service discovery, semantic annotation and service matching. This paper describes AWSC (Automatic Web Service Classification), an automatic classifier of Web service descriptions. AWSC exploits the connections between the category of a Web service and the information commonly found in standard descriptions. In addition, AWSC bridges different styles for describing services by combining text mining and machine learning techniques. Experimental evaluations show that this combination helps our classification system at improving its precision. In addition, we report an experimental comparison of AWSC with a related work. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/244807 Crasso, Marco Patricio; Zunino Suarez, Alejandro Octavio; Campo, Marcelo Ricardo; AWSC: An approach to Web service classification based on machine learning techniques; Sociedad Iberoamericana de Inteligencia Artificial; Inteligencia Artificial; 12; 37; 6-2008; 25-36 1988-3064 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/244807 |
identifier_str_mv |
Crasso, Marco Patricio; Zunino Suarez, Alejandro Octavio; Campo, Marcelo Ricardo; AWSC: An approach to Web service classification based on machine learning techniques; Sociedad Iberoamericana de Inteligencia Artificial; Inteligencia Artificial; 12; 37; 6-2008; 25-36 1988-3064 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://journal.iberamia.org/public/Vol.1-14.html#2008 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Sociedad Iberoamericana de Inteligencia Artificial |
publisher.none.fl_str_mv |
Sociedad Iberoamericana de Inteligencia Artificial |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614465744535552 |
score |
13.069144 |