UNSL at eRisk 2022: decision policies with history for early classification
- Autores
- Loyola, Juan Martin; Thompson, Horacio Jesus; Burdisso, Sergio Gastón; Errecalde, Marcelo Luis
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- For the 2022 edition of the CLEF eRisk Laboratory, our research group at Universidad Nacional de San Luis (UNSL) added new approaches and improvements concerning our last participation. We proposed two decision policies for EarlyModel that take into account historic information available to the models, and incorporated two score normalization steps into the SS3 model. We also significantly reduced the runtime to process the inputs. Despite not having achieved the best performances, our team obtained the best results for the ERDE50 in tasks T1 and T2. Besides, considering the F latency, we were the third-best team for both tasks. Finally, a couple of our models got some of the best performance for the ranking-based metrics for task T1.
Fil: Loyola, Juan Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Informática. Laboratorio Investigación y Desarrollo en Inteligencia Computacional; Argentina
Fil: Thompson, Horacio Jesus. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Informática. Laboratorio Investigación y Desarrollo en Inteligencia Computacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis; Argentina
Fil: Burdisso, Sergio Gastón. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Informática. Laboratorio Investigación y Desarrollo en Inteligencia Computacional; Argentina. Institut Dalle Molle d'intelligence artificielle perceptive; Suiza
Fil: Errecalde, Marcelo Luis. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Informática. Laboratorio Investigación y Desarrollo en Inteligencia Computacional; Argentina
Conference and Labs of the Evaluation Forum (CLEF-WN 2022)
Bologna
Italia
Università di Bologna - Materia
-
MACHINE LEARNING
EARLY RISK DETECTION
EARLY CLASSIFICATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/269451
Ver los metadatos del registro completo
id |
CONICETDig_3f560152a1f678ceb9e3d022fe985a0d |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/269451 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
UNSL at eRisk 2022: decision policies with history for early classificationLoyola, Juan MartinThompson, Horacio JesusBurdisso, Sergio GastónErrecalde, Marcelo LuisMACHINE LEARNINGEARLY RISK DETECTIONEARLY CLASSIFICATIONhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1For the 2022 edition of the CLEF eRisk Laboratory, our research group at Universidad Nacional de San Luis (UNSL) added new approaches and improvements concerning our last participation. We proposed two decision policies for EarlyModel that take into account historic information available to the models, and incorporated two score normalization steps into the SS3 model. We also significantly reduced the runtime to process the inputs. Despite not having achieved the best performances, our team obtained the best results for the ERDE50 in tasks T1 and T2. Besides, considering the F latency, we were the third-best team for both tasks. Finally, a couple of our models got some of the best performance for the ranking-based metrics for task T1.Fil: Loyola, Juan Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Informática. Laboratorio Investigación y Desarrollo en Inteligencia Computacional; ArgentinaFil: Thompson, Horacio Jesus. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Informática. Laboratorio Investigación y Desarrollo en Inteligencia Computacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis; ArgentinaFil: Burdisso, Sergio Gastón. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Informática. Laboratorio Investigación y Desarrollo en Inteligencia Computacional; Argentina. Institut Dalle Molle d'intelligence artificielle perceptive; SuizaFil: Errecalde, Marcelo Luis. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Informática. Laboratorio Investigación y Desarrollo en Inteligencia Computacional; ArgentinaConference and Labs of the Evaluation Forum (CLEF-WN 2022)BolognaItaliaUniversità di BolognaRWTH Aachen University2022info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectConferenciaJournalhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/269451UNSL at eRisk 2022: decision policies with history for early classification; Conference and Labs of the Evaluation Forum (CLEF-WN 2022); Bologna; Italia; 2022; 947-9601613-0073CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://ceur-ws.org/Vol-3180/info:eu-repo/semantics/altIdentifier/url/https://ceur-ws.org/Vol-3180/paper-75.pdfInternacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:02:40Zoai:ri.conicet.gov.ar:11336/269451instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:02:41.081CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
UNSL at eRisk 2022: decision policies with history for early classification |
title |
UNSL at eRisk 2022: decision policies with history for early classification |
spellingShingle |
UNSL at eRisk 2022: decision policies with history for early classification Loyola, Juan Martin MACHINE LEARNING EARLY RISK DETECTION EARLY CLASSIFICATION |
title_short |
UNSL at eRisk 2022: decision policies with history for early classification |
title_full |
UNSL at eRisk 2022: decision policies with history for early classification |
title_fullStr |
UNSL at eRisk 2022: decision policies with history for early classification |
title_full_unstemmed |
UNSL at eRisk 2022: decision policies with history for early classification |
title_sort |
UNSL at eRisk 2022: decision policies with history for early classification |
dc.creator.none.fl_str_mv |
Loyola, Juan Martin Thompson, Horacio Jesus Burdisso, Sergio Gastón Errecalde, Marcelo Luis |
author |
Loyola, Juan Martin |
author_facet |
Loyola, Juan Martin Thompson, Horacio Jesus Burdisso, Sergio Gastón Errecalde, Marcelo Luis |
author_role |
author |
author2 |
Thompson, Horacio Jesus Burdisso, Sergio Gastón Errecalde, Marcelo Luis |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
MACHINE LEARNING EARLY RISK DETECTION EARLY CLASSIFICATION |
topic |
MACHINE LEARNING EARLY RISK DETECTION EARLY CLASSIFICATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
For the 2022 edition of the CLEF eRisk Laboratory, our research group at Universidad Nacional de San Luis (UNSL) added new approaches and improvements concerning our last participation. We proposed two decision policies for EarlyModel that take into account historic information available to the models, and incorporated two score normalization steps into the SS3 model. We also significantly reduced the runtime to process the inputs. Despite not having achieved the best performances, our team obtained the best results for the ERDE50 in tasks T1 and T2. Besides, considering the F latency, we were the third-best team for both tasks. Finally, a couple of our models got some of the best performance for the ranking-based metrics for task T1. Fil: Loyola, Juan Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Informática. Laboratorio Investigación y Desarrollo en Inteligencia Computacional; Argentina Fil: Thompson, Horacio Jesus. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Informática. Laboratorio Investigación y Desarrollo en Inteligencia Computacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis; Argentina Fil: Burdisso, Sergio Gastón. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Informática. Laboratorio Investigación y Desarrollo en Inteligencia Computacional; Argentina. Institut Dalle Molle d'intelligence artificielle perceptive; Suiza Fil: Errecalde, Marcelo Luis. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Informática. Laboratorio Investigación y Desarrollo en Inteligencia Computacional; Argentina Conference and Labs of the Evaluation Forum (CLEF-WN 2022) Bologna Italia Università di Bologna |
description |
For the 2022 edition of the CLEF eRisk Laboratory, our research group at Universidad Nacional de San Luis (UNSL) added new approaches and improvements concerning our last participation. We proposed two decision policies for EarlyModel that take into account historic information available to the models, and incorporated two score normalization steps into the SS3 model. We also significantly reduced the runtime to process the inputs. Despite not having achieved the best performances, our team obtained the best results for the ERDE50 in tasks T1 and T2. Besides, considering the F latency, we were the third-best team for both tasks. Finally, a couple of our models got some of the best performance for the ranking-based metrics for task T1. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/conferenceObject Conferencia Journal http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
status_str |
publishedVersion |
format |
conferenceObject |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/269451 UNSL at eRisk 2022: decision policies with history for early classification; Conference and Labs of the Evaluation Forum (CLEF-WN 2022); Bologna; Italia; 2022; 947-960 1613-0073 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/269451 |
identifier_str_mv |
UNSL at eRisk 2022: decision policies with history for early classification; Conference and Labs of the Evaluation Forum (CLEF-WN 2022); Bologna; Italia; 2022; 947-960 1613-0073 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://ceur-ws.org/Vol-3180/ info:eu-repo/semantics/altIdentifier/url/https://ceur-ws.org/Vol-3180/paper-75.pdf |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.coverage.none.fl_str_mv |
Internacional |
dc.publisher.none.fl_str_mv |
RWTH Aachen University |
publisher.none.fl_str_mv |
RWTH Aachen University |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613833560162304 |
score |
13.069144 |