Mobile robot navigation with a self-paced brain–computer interface based on high-frequency SSVEP
- Autores
- Diez, Pablo Federico; Mut, Vicente Antonio; Laciar Leber, Eric; Avila Perona, Enrique Mario
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A brain–computer interface (BCI) is a system for commanding a device by means of brain signals without having to move any muscle. One kind of BCI is based on Steady-State Visual Evoked Potentials (SSVEP), which are evoked visual cortex responses elicited by a twinkling light source. Stimuli can produce visual fatigue; however, it has been well established that high-frequency SSVEP (>30 Hz) does not. In this paper, a mobile robot is remotely navigated into an office environment by means of an asynchronous high-frequency SSVEP-based BCI along with the image of a video camera. This BCI uses only three electroencephalographic channels and a simple processing signal method. The robot velocity control and the avoidance obstacle algorithms are also herein described. Seven volunteers were able to drive the mobile robot towards two different places. They had to evade desks and shelves, pass through a doorway and navigate in a corridor. The system was designed so as to allow the subject to move about without restrictions, since he/she had full robot movement's control. It was concluded that the developed system allows for remote mobile robot navigation in real indoor environments using brain signals. The proposed system is easy to use and does not require any special training. The user's visual fatigue is reduced because high-frequency stimulation is employed and, furthermore, the user gazes at the stimulus only when a command must be sent to the robot.
Fil: Diez, Pablo Federico. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Mut, Vicente Antonio. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Laciar Leber, Eric. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Avila Perona, Enrique Mario. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Brain-Computer Interface
Electroencephalography
Man-Machine System
Mobile Robot
Steady-State Visual Evoked Potentials - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/35917
Ver los metadatos del registro completo
id |
CONICETDig_297913dd3c82d6372d540cfa68022001 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/35917 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Mobile robot navigation with a self-paced brain–computer interface based on high-frequency SSVEPDiez, Pablo FedericoMut, Vicente AntonioLaciar Leber, EricAvila Perona, Enrique MarioBrain-Computer InterfaceElectroencephalographyMan-Machine SystemMobile RobotSteady-State Visual Evoked Potentialshttps://purl.org/becyt/ford/2.6https://purl.org/becyt/ford/2A brain–computer interface (BCI) is a system for commanding a device by means of brain signals without having to move any muscle. One kind of BCI is based on Steady-State Visual Evoked Potentials (SSVEP), which are evoked visual cortex responses elicited by a twinkling light source. Stimuli can produce visual fatigue; however, it has been well established that high-frequency SSVEP (>30 Hz) does not. In this paper, a mobile robot is remotely navigated into an office environment by means of an asynchronous high-frequency SSVEP-based BCI along with the image of a video camera. This BCI uses only three electroencephalographic channels and a simple processing signal method. The robot velocity control and the avoidance obstacle algorithms are also herein described. Seven volunteers were able to drive the mobile robot towards two different places. They had to evade desks and shelves, pass through a doorway and navigate in a corridor. The system was designed so as to allow the subject to move about without restrictions, since he/she had full robot movement's control. It was concluded that the developed system allows for remote mobile robot navigation in real indoor environments using brain signals. The proposed system is easy to use and does not require any special training. The user's visual fatigue is reduced because high-frequency stimulation is employed and, furthermore, the user gazes at the stimulus only when a command must be sent to the robot.Fil: Diez, Pablo Federico. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Mut, Vicente Antonio. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Laciar Leber, Eric. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Avila Perona, Enrique Mario. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaCambridge University Press2013-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/35917Diez, Pablo Federico; Mut, Vicente Antonio; Laciar Leber, Eric; Avila Perona, Enrique Mario; Mobile robot navigation with a self-paced brain–computer interface based on high-frequency SSVEP; Cambridge University Press; Robotica; 32; 5; 11-2013; 695-7090263-5747CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1017/S0263574713001021info:eu-repo/semantics/altIdentifier/url/https://www.cambridge.org/core/journals/robotica/article/mobile-robot-navigation-with-a-selfpaced-braincomputer-interface-based-on-highfrequency-ssvep/7AA36DD239B3125776534C5C9214B79Binfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:53:08Zoai:ri.conicet.gov.ar:11336/35917instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:53:09.197CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Mobile robot navigation with a self-paced brain–computer interface based on high-frequency SSVEP |
title |
Mobile robot navigation with a self-paced brain–computer interface based on high-frequency SSVEP |
spellingShingle |
Mobile robot navigation with a self-paced brain–computer interface based on high-frequency SSVEP Diez, Pablo Federico Brain-Computer Interface Electroencephalography Man-Machine System Mobile Robot Steady-State Visual Evoked Potentials |
title_short |
Mobile robot navigation with a self-paced brain–computer interface based on high-frequency SSVEP |
title_full |
Mobile robot navigation with a self-paced brain–computer interface based on high-frequency SSVEP |
title_fullStr |
Mobile robot navigation with a self-paced brain–computer interface based on high-frequency SSVEP |
title_full_unstemmed |
Mobile robot navigation with a self-paced brain–computer interface based on high-frequency SSVEP |
title_sort |
Mobile robot navigation with a self-paced brain–computer interface based on high-frequency SSVEP |
dc.creator.none.fl_str_mv |
Diez, Pablo Federico Mut, Vicente Antonio Laciar Leber, Eric Avila Perona, Enrique Mario |
author |
Diez, Pablo Federico |
author_facet |
Diez, Pablo Federico Mut, Vicente Antonio Laciar Leber, Eric Avila Perona, Enrique Mario |
author_role |
author |
author2 |
Mut, Vicente Antonio Laciar Leber, Eric Avila Perona, Enrique Mario |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Brain-Computer Interface Electroencephalography Man-Machine System Mobile Robot Steady-State Visual Evoked Potentials |
topic |
Brain-Computer Interface Electroencephalography Man-Machine System Mobile Robot Steady-State Visual Evoked Potentials |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.6 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
A brain–computer interface (BCI) is a system for commanding a device by means of brain signals without having to move any muscle. One kind of BCI is based on Steady-State Visual Evoked Potentials (SSVEP), which are evoked visual cortex responses elicited by a twinkling light source. Stimuli can produce visual fatigue; however, it has been well established that high-frequency SSVEP (>30 Hz) does not. In this paper, a mobile robot is remotely navigated into an office environment by means of an asynchronous high-frequency SSVEP-based BCI along with the image of a video camera. This BCI uses only three electroencephalographic channels and a simple processing signal method. The robot velocity control and the avoidance obstacle algorithms are also herein described. Seven volunteers were able to drive the mobile robot towards two different places. They had to evade desks and shelves, pass through a doorway and navigate in a corridor. The system was designed so as to allow the subject to move about without restrictions, since he/she had full robot movement's control. It was concluded that the developed system allows for remote mobile robot navigation in real indoor environments using brain signals. The proposed system is easy to use and does not require any special training. The user's visual fatigue is reduced because high-frequency stimulation is employed and, furthermore, the user gazes at the stimulus only when a command must be sent to the robot. Fil: Diez, Pablo Federico. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Mut, Vicente Antonio. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Laciar Leber, Eric. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Avila Perona, Enrique Mario. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
A brain–computer interface (BCI) is a system for commanding a device by means of brain signals without having to move any muscle. One kind of BCI is based on Steady-State Visual Evoked Potentials (SSVEP), which are evoked visual cortex responses elicited by a twinkling light source. Stimuli can produce visual fatigue; however, it has been well established that high-frequency SSVEP (>30 Hz) does not. In this paper, a mobile robot is remotely navigated into an office environment by means of an asynchronous high-frequency SSVEP-based BCI along with the image of a video camera. This BCI uses only three electroencephalographic channels and a simple processing signal method. The robot velocity control and the avoidance obstacle algorithms are also herein described. Seven volunteers were able to drive the mobile robot towards two different places. They had to evade desks and shelves, pass through a doorway and navigate in a corridor. The system was designed so as to allow the subject to move about without restrictions, since he/she had full robot movement's control. It was concluded that the developed system allows for remote mobile robot navigation in real indoor environments using brain signals. The proposed system is easy to use and does not require any special training. The user's visual fatigue is reduced because high-frequency stimulation is employed and, furthermore, the user gazes at the stimulus only when a command must be sent to the robot. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/35917 Diez, Pablo Federico; Mut, Vicente Antonio; Laciar Leber, Eric; Avila Perona, Enrique Mario; Mobile robot navigation with a self-paced brain–computer interface based on high-frequency SSVEP; Cambridge University Press; Robotica; 32; 5; 11-2013; 695-709 0263-5747 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/35917 |
identifier_str_mv |
Diez, Pablo Federico; Mut, Vicente Antonio; Laciar Leber, Eric; Avila Perona, Enrique Mario; Mobile robot navigation with a self-paced brain–computer interface based on high-frequency SSVEP; Cambridge University Press; Robotica; 32; 5; 11-2013; 695-709 0263-5747 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1017/S0263574713001021 info:eu-repo/semantics/altIdentifier/url/https://www.cambridge.org/core/journals/robotica/article/mobile-robot-navigation-with-a-selfpaced-braincomputer-interface-based-on-highfrequency-ssvep/7AA36DD239B3125776534C5C9214B79B |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Cambridge University Press |
publisher.none.fl_str_mv |
Cambridge University Press |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269204210778112 |
score |
13.13397 |