A Brain-Controlled Vehicle System Based on Steady State Visual Evoked Potentials
- Autores
- Zhang, Zhao; Han, Shuning; Yi, Huaihai; Duan, Feng; Kang, Fei; Sun, Zhe; Solé Casals, Jordi; Caiafa, César Federico
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper, we propose a human-vehicle cooperative driving system. The objectives of this research are twofold: (1) providing a feasible brain-controlled vehicle (BCV) mode; (2) providing a human-vehicle cooperative control mode. For the first aim, through a brain-computer interface (BCI), we can analyse the EEG signal and get the driving intentions of the driver. For the second aim, the human-vehicle cooperative control is manifested in the BCV combined with the obstacle detection assistance. Considering the potential dangers of driving a real motor vehicle in the outdoor, an obstacle detection module is essential in the human-vehicle cooperative driving system. Obstacle detection and emergency braking can ensure the safety of the driver and the vehicle during driving. EEG system based on steady-state visual evoked potential (SSVEP) is used in the BCI. Simulation and real vehicle driving experiment platform are designed to verify the feasibility of the proposed human-vehicle cooperative driving system. Five subjects participated in the simulation experiment and real the vehicle driving experiment. The outdoor experimental results show that the average accuracy of intention recognition is 90.68 ± 2.96% on the real vehicle platform. In this paper, we verified the feasibility of the SSVEP-based BCV mode and realised the human-vehicle cooperative driving system.
Fil: Zhang, Zhao. Civil Aviation University Of China; China
Fil: Han, Shuning. Universitat de Vic - Universitat Central de Catalunya ; España
Fil: Yi, Huaihai. China University Of Geosciences; China
Fil: Duan, Feng. Nankai University; China
Fil: Kang, Fei. Maebashi Institute Of Technology; Japón
Fil: Sun, Zhe. Riken; Japón
Fil: Solé Casals, Jordi. Universitat de Vic - Universitat Central de Catalunya; España. Nankai University; China. University of Cambridge; Reino Unido
Fil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina. Nankai University; China - Materia
-
BRAIN-COMPUTER INTERFACE (BCI)
BRAIN-CONTROLLED VEHICLE (BCV)
ELECTRO-ENCEPHALOGRAM (EEG)
INTELLIGENT DRIVING TECHNOLOGY
STEADY-STATE VISUAL EVOKED POTENTIAL (SSVEP) - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/214541
Ver los metadatos del registro completo
id |
CONICETDig_d4b7ebcfd3501794e5eb1c3fa8f4b263 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/214541 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A Brain-Controlled Vehicle System Based on Steady State Visual Evoked PotentialsZhang, ZhaoHan, ShuningYi, HuaihaiDuan, FengKang, FeiSun, ZheSolé Casals, JordiCaiafa, César FedericoBRAIN-COMPUTER INTERFACE (BCI)BRAIN-CONTROLLED VEHICLE (BCV)ELECTRO-ENCEPHALOGRAM (EEG)INTELLIGENT DRIVING TECHNOLOGYSTEADY-STATE VISUAL EVOKED POTENTIAL (SSVEP)https://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1In this paper, we propose a human-vehicle cooperative driving system. The objectives of this research are twofold: (1) providing a feasible brain-controlled vehicle (BCV) mode; (2) providing a human-vehicle cooperative control mode. For the first aim, through a brain-computer interface (BCI), we can analyse the EEG signal and get the driving intentions of the driver. For the second aim, the human-vehicle cooperative control is manifested in the BCV combined with the obstacle detection assistance. Considering the potential dangers of driving a real motor vehicle in the outdoor, an obstacle detection module is essential in the human-vehicle cooperative driving system. Obstacle detection and emergency braking can ensure the safety of the driver and the vehicle during driving. EEG system based on steady-state visual evoked potential (SSVEP) is used in the BCI. Simulation and real vehicle driving experiment platform are designed to verify the feasibility of the proposed human-vehicle cooperative driving system. Five subjects participated in the simulation experiment and real the vehicle driving experiment. The outdoor experimental results show that the average accuracy of intention recognition is 90.68 ± 2.96% on the real vehicle platform. In this paper, we verified the feasibility of the SSVEP-based BCV mode and realised the human-vehicle cooperative driving system.Fil: Zhang, Zhao. Civil Aviation University Of China; ChinaFil: Han, Shuning. Universitat de Vic - Universitat Central de Catalunya ; EspañaFil: Yi, Huaihai. China University Of Geosciences; ChinaFil: Duan, Feng. Nankai University; ChinaFil: Kang, Fei. Maebashi Institute Of Technology; JapónFil: Sun, Zhe. Riken; JapónFil: Solé Casals, Jordi. Universitat de Vic - Universitat Central de Catalunya; España. Nankai University; China. University of Cambridge; Reino UnidoFil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina. Nankai University; ChinaSpringer2022-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/214541Zhang, Zhao; Han, Shuning; Yi, Huaihai; Duan, Feng; Kang, Fei; et al.; A Brain-Controlled Vehicle System Based on Steady State Visual Evoked Potentials; Springer; Cognitive Computation; 15; 1; 9-2022; 159-1751866-99561866-9964CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.1007/s12559-022-10051-1info:eu-repo/semantics/altIdentifier/doi/10.1007/s12559-022-10051-1info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:51:34Zoai:ri.conicet.gov.ar:11336/214541instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:51:34.782CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A Brain-Controlled Vehicle System Based on Steady State Visual Evoked Potentials |
title |
A Brain-Controlled Vehicle System Based on Steady State Visual Evoked Potentials |
spellingShingle |
A Brain-Controlled Vehicle System Based on Steady State Visual Evoked Potentials Zhang, Zhao BRAIN-COMPUTER INTERFACE (BCI) BRAIN-CONTROLLED VEHICLE (BCV) ELECTRO-ENCEPHALOGRAM (EEG) INTELLIGENT DRIVING TECHNOLOGY STEADY-STATE VISUAL EVOKED POTENTIAL (SSVEP) |
title_short |
A Brain-Controlled Vehicle System Based on Steady State Visual Evoked Potentials |
title_full |
A Brain-Controlled Vehicle System Based on Steady State Visual Evoked Potentials |
title_fullStr |
A Brain-Controlled Vehicle System Based on Steady State Visual Evoked Potentials |
title_full_unstemmed |
A Brain-Controlled Vehicle System Based on Steady State Visual Evoked Potentials |
title_sort |
A Brain-Controlled Vehicle System Based on Steady State Visual Evoked Potentials |
dc.creator.none.fl_str_mv |
Zhang, Zhao Han, Shuning Yi, Huaihai Duan, Feng Kang, Fei Sun, Zhe Solé Casals, Jordi Caiafa, César Federico |
author |
Zhang, Zhao |
author_facet |
Zhang, Zhao Han, Shuning Yi, Huaihai Duan, Feng Kang, Fei Sun, Zhe Solé Casals, Jordi Caiafa, César Federico |
author_role |
author |
author2 |
Han, Shuning Yi, Huaihai Duan, Feng Kang, Fei Sun, Zhe Solé Casals, Jordi Caiafa, César Federico |
author2_role |
author author author author author author author |
dc.subject.none.fl_str_mv |
BRAIN-COMPUTER INTERFACE (BCI) BRAIN-CONTROLLED VEHICLE (BCV) ELECTRO-ENCEPHALOGRAM (EEG) INTELLIGENT DRIVING TECHNOLOGY STEADY-STATE VISUAL EVOKED POTENTIAL (SSVEP) |
topic |
BRAIN-COMPUTER INTERFACE (BCI) BRAIN-CONTROLLED VEHICLE (BCV) ELECTRO-ENCEPHALOGRAM (EEG) INTELLIGENT DRIVING TECHNOLOGY STEADY-STATE VISUAL EVOKED POTENTIAL (SSVEP) |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper, we propose a human-vehicle cooperative driving system. The objectives of this research are twofold: (1) providing a feasible brain-controlled vehicle (BCV) mode; (2) providing a human-vehicle cooperative control mode. For the first aim, through a brain-computer interface (BCI), we can analyse the EEG signal and get the driving intentions of the driver. For the second aim, the human-vehicle cooperative control is manifested in the BCV combined with the obstacle detection assistance. Considering the potential dangers of driving a real motor vehicle in the outdoor, an obstacle detection module is essential in the human-vehicle cooperative driving system. Obstacle detection and emergency braking can ensure the safety of the driver and the vehicle during driving. EEG system based on steady-state visual evoked potential (SSVEP) is used in the BCI. Simulation and real vehicle driving experiment platform are designed to verify the feasibility of the proposed human-vehicle cooperative driving system. Five subjects participated in the simulation experiment and real the vehicle driving experiment. The outdoor experimental results show that the average accuracy of intention recognition is 90.68 ± 2.96% on the real vehicle platform. In this paper, we verified the feasibility of the SSVEP-based BCV mode and realised the human-vehicle cooperative driving system. Fil: Zhang, Zhao. Civil Aviation University Of China; China Fil: Han, Shuning. Universitat de Vic - Universitat Central de Catalunya ; España Fil: Yi, Huaihai. China University Of Geosciences; China Fil: Duan, Feng. Nankai University; China Fil: Kang, Fei. Maebashi Institute Of Technology; Japón Fil: Sun, Zhe. Riken; Japón Fil: Solé Casals, Jordi. Universitat de Vic - Universitat Central de Catalunya; España. Nankai University; China. University of Cambridge; Reino Unido Fil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina. Nankai University; China |
description |
In this paper, we propose a human-vehicle cooperative driving system. The objectives of this research are twofold: (1) providing a feasible brain-controlled vehicle (BCV) mode; (2) providing a human-vehicle cooperative control mode. For the first aim, through a brain-computer interface (BCI), we can analyse the EEG signal and get the driving intentions of the driver. For the second aim, the human-vehicle cooperative control is manifested in the BCV combined with the obstacle detection assistance. Considering the potential dangers of driving a real motor vehicle in the outdoor, an obstacle detection module is essential in the human-vehicle cooperative driving system. Obstacle detection and emergency braking can ensure the safety of the driver and the vehicle during driving. EEG system based on steady-state visual evoked potential (SSVEP) is used in the BCI. Simulation and real vehicle driving experiment platform are designed to verify the feasibility of the proposed human-vehicle cooperative driving system. Five subjects participated in the simulation experiment and real the vehicle driving experiment. The outdoor experimental results show that the average accuracy of intention recognition is 90.68 ± 2.96% on the real vehicle platform. In this paper, we verified the feasibility of the SSVEP-based BCV mode and realised the human-vehicle cooperative driving system. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/214541 Zhang, Zhao; Han, Shuning; Yi, Huaihai; Duan, Feng; Kang, Fei; et al.; A Brain-Controlled Vehicle System Based on Steady State Visual Evoked Potentials; Springer; Cognitive Computation; 15; 1; 9-2022; 159-175 1866-9956 1866-9964 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/214541 |
identifier_str_mv |
Zhang, Zhao; Han, Shuning; Yi, Huaihai; Duan, Feng; Kang, Fei; et al.; A Brain-Controlled Vehicle System Based on Steady State Visual Evoked Potentials; Springer; Cognitive Computation; 15; 1; 9-2022; 159-175 1866-9956 1866-9964 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.1007/s12559-022-10051-1 info:eu-repo/semantics/altIdentifier/doi/10.1007/s12559-022-10051-1 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269103169994752 |
score |
13.13397 |