On Riesz transforms and maximal functions in the context of Gaussian harmonic analysis
- Autores
- Aimar, Hugo Alejandro; Forzani, Liliana Maria; Scotto, Roberto Aníbal
- Año de publicación
- 2007
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The purpose of this paper is twofold. We introduce a general maximal function on the Gaussian setting which dominates the Ornstein-Uhlenbeck maximal operator and prove its weak type by using a covering lemma which is halfway between Besicovitch and Wiener. On the other hand, by taking as a starting point the generalized Cauchy-Riemann equations, we introduce a new class of Gaussian Riesz Transforms. We prove, using the maximal function defined in the first part of the paper, that unlike the ones already studied, these new Riesz Transforms are weak type independently of their orders.
Fil: Aimar, Hugo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Forzani, Liliana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Scotto, Roberto Aníbal. Universidad Nacional del Litoral; Argentina - Materia
-
Gaussian Measure
Maximal Functions
Singular Integrals
Hermie Expansions - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/84070
Ver los metadatos del registro completo
id |
CONICETDig_28777541db4cc157c6ac41edfb468027 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/84070 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On Riesz transforms and maximal functions in the context of Gaussian harmonic analysisAimar, Hugo AlejandroForzani, Liliana MariaScotto, Roberto AníbalGaussian MeasureMaximal FunctionsSingular IntegralsHermie Expansionshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The purpose of this paper is twofold. We introduce a general maximal function on the Gaussian setting which dominates the Ornstein-Uhlenbeck maximal operator and prove its weak type by using a covering lemma which is halfway between Besicovitch and Wiener. On the other hand, by taking as a starting point the generalized Cauchy-Riemann equations, we introduce a new class of Gaussian Riesz Transforms. We prove, using the maximal function defined in the first part of the paper, that unlike the ones already studied, these new Riesz Transforms are weak type independently of their orders.Fil: Aimar, Hugo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Forzani, Liliana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Scotto, Roberto Aníbal. Universidad Nacional del Litoral; ArgentinaAmerican Mathematical Society2007-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/84070Aimar, Hugo Alejandro; Forzani, Liliana Maria; Scotto, Roberto Aníbal; On Riesz transforms and maximal functions in the context of Gaussian harmonic analysis; American Mathematical Society; Transactions Of The American Mathematical Society; 359; 5; 12-2007; 2137-21540002-9947CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.2307/20161669info:eu-repo/semantics/altIdentifier/url/https://www.jstor.org/stable/20161669info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:10:39Zoai:ri.conicet.gov.ar:11336/84070instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:10:39.683CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On Riesz transforms and maximal functions in the context of Gaussian harmonic analysis |
title |
On Riesz transforms and maximal functions in the context of Gaussian harmonic analysis |
spellingShingle |
On Riesz transforms and maximal functions in the context of Gaussian harmonic analysis Aimar, Hugo Alejandro Gaussian Measure Maximal Functions Singular Integrals Hermie Expansions |
title_short |
On Riesz transforms and maximal functions in the context of Gaussian harmonic analysis |
title_full |
On Riesz transforms and maximal functions in the context of Gaussian harmonic analysis |
title_fullStr |
On Riesz transforms and maximal functions in the context of Gaussian harmonic analysis |
title_full_unstemmed |
On Riesz transforms and maximal functions in the context of Gaussian harmonic analysis |
title_sort |
On Riesz transforms and maximal functions in the context of Gaussian harmonic analysis |
dc.creator.none.fl_str_mv |
Aimar, Hugo Alejandro Forzani, Liliana Maria Scotto, Roberto Aníbal |
author |
Aimar, Hugo Alejandro |
author_facet |
Aimar, Hugo Alejandro Forzani, Liliana Maria Scotto, Roberto Aníbal |
author_role |
author |
author2 |
Forzani, Liliana Maria Scotto, Roberto Aníbal |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Gaussian Measure Maximal Functions Singular Integrals Hermie Expansions |
topic |
Gaussian Measure Maximal Functions Singular Integrals Hermie Expansions |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The purpose of this paper is twofold. We introduce a general maximal function on the Gaussian setting which dominates the Ornstein-Uhlenbeck maximal operator and prove its weak type by using a covering lemma which is halfway between Besicovitch and Wiener. On the other hand, by taking as a starting point the generalized Cauchy-Riemann equations, we introduce a new class of Gaussian Riesz Transforms. We prove, using the maximal function defined in the first part of the paper, that unlike the ones already studied, these new Riesz Transforms are weak type independently of their orders. Fil: Aimar, Hugo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina Fil: Forzani, Liliana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina Fil: Scotto, Roberto Aníbal. Universidad Nacional del Litoral; Argentina |
description |
The purpose of this paper is twofold. We introduce a general maximal function on the Gaussian setting which dominates the Ornstein-Uhlenbeck maximal operator and prove its weak type by using a covering lemma which is halfway between Besicovitch and Wiener. On the other hand, by taking as a starting point the generalized Cauchy-Riemann equations, we introduce a new class of Gaussian Riesz Transforms. We prove, using the maximal function defined in the first part of the paper, that unlike the ones already studied, these new Riesz Transforms are weak type independently of their orders. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/84070 Aimar, Hugo Alejandro; Forzani, Liliana Maria; Scotto, Roberto Aníbal; On Riesz transforms and maximal functions in the context of Gaussian harmonic analysis; American Mathematical Society; Transactions Of The American Mathematical Society; 359; 5; 12-2007; 2137-2154 0002-9947 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/84070 |
identifier_str_mv |
Aimar, Hugo Alejandro; Forzani, Liliana Maria; Scotto, Roberto Aníbal; On Riesz transforms and maximal functions in the context of Gaussian harmonic analysis; American Mathematical Society; Transactions Of The American Mathematical Society; 359; 5; 12-2007; 2137-2154 0002-9947 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.2307/20161669 info:eu-repo/semantics/altIdentifier/url/https://www.jstor.org/stable/20161669 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Mathematical Society |
publisher.none.fl_str_mv |
American Mathematical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083254885548032 |
score |
13.22299 |