An explicit expression for singular integral operators with non-necessarily doubling measures

Autores
Viola, Pablo Sebastian; Viviani, Beatriz Eleonora
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study singular integral operators with Hilbert-valued kernels in the setting of R n with non-necessarily doubling measures. We obtain an explicit formula for these operators following a similar approach as in Macías et al. (Adv Math 93:25?60, 1992). By using this formula and a result due to Krein we get a T1-theorem in this context. Finally, we develop a theory for antisymmetric kernels and we apply the results to the oscillation operators related to the Riesz transform.
Fil: Viola, Pablo Sebastian. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Núcleo Consolidado de Matemática Pura y Aplicada; Argentina
Fil: Viviani, Beatriz Eleonora. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Materia
Singular Integrals
Non Doubling Measures
Vector Valued Functions
Oscillation Operators
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/84088

id CONICETDig_afce47b331c0db5469f7574deb52a011
oai_identifier_str oai:ri.conicet.gov.ar:11336/84088
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling An explicit expression for singular integral operators with non-necessarily doubling measuresViola, Pablo SebastianViviani, Beatriz EleonoraSingular IntegralsNon Doubling MeasuresVector Valued FunctionsOscillation Operatorshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study singular integral operators with Hilbert-valued kernels in the setting of R n with non-necessarily doubling measures. We obtain an explicit formula for these operators following a similar approach as in Macías et al. (Adv Math 93:25?60, 1992). By using this formula and a result due to Krein we get a T1-theorem in this context. Finally, we develop a theory for antisymmetric kernels and we apply the results to the oscillation operators related to the Riesz transform.Fil: Viola, Pablo Sebastian. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Núcleo Consolidado de Matemática Pura y Aplicada; ArgentinaFil: Viviani, Beatriz Eleonora. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaUniversidad de Barcelona2012-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/84088Viola, Pablo Sebastian; Viviani, Beatriz Eleonora; An explicit expression for singular integral operators with non-necessarily doubling measures; Universidad de Barcelona; Collectanea Mathematica; 63; 2; 5-2012; 217-2420010-0757CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s13348-011-0038-8info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:19:47Zoai:ri.conicet.gov.ar:11336/84088instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:19:48.043CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv An explicit expression for singular integral operators with non-necessarily doubling measures
title An explicit expression for singular integral operators with non-necessarily doubling measures
spellingShingle An explicit expression for singular integral operators with non-necessarily doubling measures
Viola, Pablo Sebastian
Singular Integrals
Non Doubling Measures
Vector Valued Functions
Oscillation Operators
title_short An explicit expression for singular integral operators with non-necessarily doubling measures
title_full An explicit expression for singular integral operators with non-necessarily doubling measures
title_fullStr An explicit expression for singular integral operators with non-necessarily doubling measures
title_full_unstemmed An explicit expression for singular integral operators with non-necessarily doubling measures
title_sort An explicit expression for singular integral operators with non-necessarily doubling measures
dc.creator.none.fl_str_mv Viola, Pablo Sebastian
Viviani, Beatriz Eleonora
author Viola, Pablo Sebastian
author_facet Viola, Pablo Sebastian
Viviani, Beatriz Eleonora
author_role author
author2 Viviani, Beatriz Eleonora
author2_role author
dc.subject.none.fl_str_mv Singular Integrals
Non Doubling Measures
Vector Valued Functions
Oscillation Operators
topic Singular Integrals
Non Doubling Measures
Vector Valued Functions
Oscillation Operators
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We study singular integral operators with Hilbert-valued kernels in the setting of R n with non-necessarily doubling measures. We obtain an explicit formula for these operators following a similar approach as in Macías et al. (Adv Math 93:25?60, 1992). By using this formula and a result due to Krein we get a T1-theorem in this context. Finally, we develop a theory for antisymmetric kernels and we apply the results to the oscillation operators related to the Riesz transform.
Fil: Viola, Pablo Sebastian. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Núcleo Consolidado de Matemática Pura y Aplicada; Argentina
Fil: Viviani, Beatriz Eleonora. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
description We study singular integral operators with Hilbert-valued kernels in the setting of R n with non-necessarily doubling measures. We obtain an explicit formula for these operators following a similar approach as in Macías et al. (Adv Math 93:25?60, 1992). By using this formula and a result due to Krein we get a T1-theorem in this context. Finally, we develop a theory for antisymmetric kernels and we apply the results to the oscillation operators related to the Riesz transform.
publishDate 2012
dc.date.none.fl_str_mv 2012-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/84088
Viola, Pablo Sebastian; Viviani, Beatriz Eleonora; An explicit expression for singular integral operators with non-necessarily doubling measures; Universidad de Barcelona; Collectanea Mathematica; 63; 2; 5-2012; 217-242
0010-0757
CONICET Digital
CONICET
url http://hdl.handle.net/11336/84088
identifier_str_mv Viola, Pablo Sebastian; Viviani, Beatriz Eleonora; An explicit expression for singular integral operators with non-necessarily doubling measures; Universidad de Barcelona; Collectanea Mathematica; 63; 2; 5-2012; 217-242
0010-0757
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1007/s13348-011-0038-8
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Universidad de Barcelona
publisher.none.fl_str_mv Universidad de Barcelona
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083346650628096
score 13.22299