Higher-Order Partial Least Squares (HOPLS) : a generalized multi-linear regression method
- Autores
- Zhao, Qibin; Caiafa, Cesar Federico; Mandic, Danilo P.; Chao, Zenas C.; Nagasaka, Yasuo; Fujii, Naotaka; Zhang, Liqing; Cichocki, Andrzej
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A new generalized multilinear regression model, termed the Higher-Order Partial Least Squares (HOPLS), is introduced with the aim to predict a tensor (multiway array) Y from a tensor X through projecting the data onto the latent space and performing regression on the corresponding latent variables. HOPLS differs substantially from other regression models in that it explains the data by a sum of orthogonal Tucker tensors, while the number of orthogonal loadings serves as a parameter to control model complexity and prevent overfitting. The low dimensional latent space is optimized sequentially via a deflation operation, yielding the best joint subspace approximation for both X and Y. Instead of decomposing X and Y individually, higher order singular value decomposition on a newly defined generalized cross-covariance tensor is employed to optimize the orthogonal loadings. A systematic comparison on both synthetic data and real-world decoding of 3D movement trajectories from electrocorticogram (ECoG) signals demonstrate the advantages of HOPLS over the existing methods in terms of better predictive ability, suitability to handle small sample sizes, and robustness to noise.
Fil: Zhao, Qibin . RIKEN Brain Science Institute; Japón
Fil: Caiafa, Cesar Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Instituto Argentino de Radioastronomia (i); Argentina
Fil: Mandic, Danilo P. . Imperial College Of Science And Technology; Reino Unido
Fil: Chao, Zenas C. . RIKEN Brain Science Institute; Japón
Fil: Nagasaka, Yasuo . RIKEN Brain Science Institute; Japón
Fil: Fujii, Naotaka. RIKEN Brain Science Institute; Japón
Fil: Zhang, Liqing. Shanghai Jiao Tong University; China
Fil: Cichocki, Andrzej. RIKEN Brain Science Institute; Japón - Materia
-
Multilinear regression
Partial Least squares
Higher-order singular value decompostion
Constrained block Tucker decomposition - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/4630
Ver los metadatos del registro completo
id |
CONICETDig_2c32b5b9879ddf45fb519e06a5e18063 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/4630 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Higher-Order Partial Least Squares (HOPLS) : a generalized multi-linear regression methodZhao, Qibin Caiafa, Cesar FedericoMandic, Danilo P. Chao, Zenas C. Nagasaka, Yasuo Fujii, NaotakaZhang, LiqingCichocki, AndrzejMultilinear regressionPartial Least squaresHigher-order singular value decompostionConstrained block Tucker decompositionhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2A new generalized multilinear regression model, termed the Higher-Order Partial Least Squares (HOPLS), is introduced with the aim to predict a tensor (multiway array) Y from a tensor X through projecting the data onto the latent space and performing regression on the corresponding latent variables. HOPLS differs substantially from other regression models in that it explains the data by a sum of orthogonal Tucker tensors, while the number of orthogonal loadings serves as a parameter to control model complexity and prevent overfitting. The low dimensional latent space is optimized sequentially via a deflation operation, yielding the best joint subspace approximation for both X and Y. Instead of decomposing X and Y individually, higher order singular value decomposition on a newly defined generalized cross-covariance tensor is employed to optimize the orthogonal loadings. A systematic comparison on both synthetic data and real-world decoding of 3D movement trajectories from electrocorticogram (ECoG) signals demonstrate the advantages of HOPLS over the existing methods in terms of better predictive ability, suitability to handle small sample sizes, and robustness to noise.Fil: Zhao, Qibin . RIKEN Brain Science Institute; JapónFil: Caiafa, Cesar Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Instituto Argentino de Radioastronomia (i); ArgentinaFil: Mandic, Danilo P. . Imperial College Of Science And Technology; Reino UnidoFil: Chao, Zenas C. . RIKEN Brain Science Institute; JapónFil: Nagasaka, Yasuo . RIKEN Brain Science Institute; JapónFil: Fujii, Naotaka. RIKEN Brain Science Institute; JapónFil: Zhang, Liqing. Shanghai Jiao Tong University; ChinaFil: Cichocki, Andrzej. RIKEN Brain Science Institute; JapónIEEE Computer Society2013-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/4630Zhao, Qibin ; Caiafa, Cesar Federico; Mandic, Danilo P. ; Chao, Zenas C. ; Nagasaka, Yasuo ; et al.; Higher-Order Partial Least Squares (HOPLS) : a generalized multi-linear regression method; IEEE Computer Society; IEEE Transactions on Pattern Analysis and Machine Intelligence; 35; 7; 7-2013; 1660-16730162-8828enginfo:eu-repo/semantics/altIdentifier/doi/10.1109/TPAMI.2012.254info:eu-repo/semantics/altIdentifier/arxiv/http://arxiv.org/abs/1207.1230info:eu-repo/semantics/altIdentifier/url/https://www.computer.org/csdl/trans/tp/2013/07/ttp2013071660-abs.htmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:57:16Zoai:ri.conicet.gov.ar:11336/4630instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:57:16.322CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Higher-Order Partial Least Squares (HOPLS) : a generalized multi-linear regression method |
title |
Higher-Order Partial Least Squares (HOPLS) : a generalized multi-linear regression method |
spellingShingle |
Higher-Order Partial Least Squares (HOPLS) : a generalized multi-linear regression method Zhao, Qibin Multilinear regression Partial Least squares Higher-order singular value decompostion Constrained block Tucker decomposition |
title_short |
Higher-Order Partial Least Squares (HOPLS) : a generalized multi-linear regression method |
title_full |
Higher-Order Partial Least Squares (HOPLS) : a generalized multi-linear regression method |
title_fullStr |
Higher-Order Partial Least Squares (HOPLS) : a generalized multi-linear regression method |
title_full_unstemmed |
Higher-Order Partial Least Squares (HOPLS) : a generalized multi-linear regression method |
title_sort |
Higher-Order Partial Least Squares (HOPLS) : a generalized multi-linear regression method |
dc.creator.none.fl_str_mv |
Zhao, Qibin Caiafa, Cesar Federico Mandic, Danilo P. Chao, Zenas C. Nagasaka, Yasuo Fujii, Naotaka Zhang, Liqing Cichocki, Andrzej |
author |
Zhao, Qibin |
author_facet |
Zhao, Qibin Caiafa, Cesar Federico Mandic, Danilo P. Chao, Zenas C. Nagasaka, Yasuo Fujii, Naotaka Zhang, Liqing Cichocki, Andrzej |
author_role |
author |
author2 |
Caiafa, Cesar Federico Mandic, Danilo P. Chao, Zenas C. Nagasaka, Yasuo Fujii, Naotaka Zhang, Liqing Cichocki, Andrzej |
author2_role |
author author author author author author author |
dc.subject.none.fl_str_mv |
Multilinear regression Partial Least squares Higher-order singular value decompostion Constrained block Tucker decomposition |
topic |
Multilinear regression Partial Least squares Higher-order singular value decompostion Constrained block Tucker decomposition |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
A new generalized multilinear regression model, termed the Higher-Order Partial Least Squares (HOPLS), is introduced with the aim to predict a tensor (multiway array) Y from a tensor X through projecting the data onto the latent space and performing regression on the corresponding latent variables. HOPLS differs substantially from other regression models in that it explains the data by a sum of orthogonal Tucker tensors, while the number of orthogonal loadings serves as a parameter to control model complexity and prevent overfitting. The low dimensional latent space is optimized sequentially via a deflation operation, yielding the best joint subspace approximation for both X and Y. Instead of decomposing X and Y individually, higher order singular value decomposition on a newly defined generalized cross-covariance tensor is employed to optimize the orthogonal loadings. A systematic comparison on both synthetic data and real-world decoding of 3D movement trajectories from electrocorticogram (ECoG) signals demonstrate the advantages of HOPLS over the existing methods in terms of better predictive ability, suitability to handle small sample sizes, and robustness to noise. Fil: Zhao, Qibin . RIKEN Brain Science Institute; Japón Fil: Caiafa, Cesar Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Instituto Argentino de Radioastronomia (i); Argentina Fil: Mandic, Danilo P. . Imperial College Of Science And Technology; Reino Unido Fil: Chao, Zenas C. . RIKEN Brain Science Institute; Japón Fil: Nagasaka, Yasuo . RIKEN Brain Science Institute; Japón Fil: Fujii, Naotaka. RIKEN Brain Science Institute; Japón Fil: Zhang, Liqing. Shanghai Jiao Tong University; China Fil: Cichocki, Andrzej. RIKEN Brain Science Institute; Japón |
description |
A new generalized multilinear regression model, termed the Higher-Order Partial Least Squares (HOPLS), is introduced with the aim to predict a tensor (multiway array) Y from a tensor X through projecting the data onto the latent space and performing regression on the corresponding latent variables. HOPLS differs substantially from other regression models in that it explains the data by a sum of orthogonal Tucker tensors, while the number of orthogonal loadings serves as a parameter to control model complexity and prevent overfitting. The low dimensional latent space is optimized sequentially via a deflation operation, yielding the best joint subspace approximation for both X and Y. Instead of decomposing X and Y individually, higher order singular value decomposition on a newly defined generalized cross-covariance tensor is employed to optimize the orthogonal loadings. A systematic comparison on both synthetic data and real-world decoding of 3D movement trajectories from electrocorticogram (ECoG) signals demonstrate the advantages of HOPLS over the existing methods in terms of better predictive ability, suitability to handle small sample sizes, and robustness to noise. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/4630 Zhao, Qibin ; Caiafa, Cesar Federico; Mandic, Danilo P. ; Chao, Zenas C. ; Nagasaka, Yasuo ; et al.; Higher-Order Partial Least Squares (HOPLS) : a generalized multi-linear regression method; IEEE Computer Society; IEEE Transactions on Pattern Analysis and Machine Intelligence; 35; 7; 7-2013; 1660-1673 0162-8828 |
url |
http://hdl.handle.net/11336/4630 |
identifier_str_mv |
Zhao, Qibin ; Caiafa, Cesar Federico; Mandic, Danilo P. ; Chao, Zenas C. ; Nagasaka, Yasuo ; et al.; Higher-Order Partial Least Squares (HOPLS) : a generalized multi-linear regression method; IEEE Computer Society; IEEE Transactions on Pattern Analysis and Machine Intelligence; 35; 7; 7-2013; 1660-1673 0162-8828 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1109/TPAMI.2012.254 info:eu-repo/semantics/altIdentifier/arxiv/http://arxiv.org/abs/1207.1230 info:eu-repo/semantics/altIdentifier/url/https://www.computer.org/csdl/trans/tp/2013/07/ttp2013071660-abs.html |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
IEEE Computer Society |
publisher.none.fl_str_mv |
IEEE Computer Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269452353142784 |
score |
13.13397 |