Approximation by invertible functions of H∞
- Autores
- Nicolau, Artur; Suarez, Fernando Daniel
- Año de publicación
- 2006
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We provide an analytic proof that if H∞ is the algebra of bounded analytic functions on the unit disk, A is a Banach algebra and f : H∞→A is a Banach algebras morphism with dense image, then f((H∞) −1 ) is dense in A−1.
Fil: Nicolau, Artur. Universitat Autònoma de Barcelona; España
Fil: Suarez, Fernando Daniel. Universitat Autònoma de Barcelona; España. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina - Materia
- aproximación
- Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/19438
Ver los metadatos del registro completo
id |
CONICETDig_2646fafd8c818fc595c1cc33ffd1b33a |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/19438 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Approximation by invertible functions of H∞Nicolau, ArturSuarez, Fernando Danielaproximaciónhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We provide an analytic proof that if H∞ is the algebra of bounded analytic functions on the unit disk, A is a Banach algebra and f : H∞→A is a Banach algebras morphism with dense image, then f((H∞) −1 ) is dense in A−1.Fil: Nicolau, Artur. Universitat Autònoma de Barcelona; EspañaFil: Suarez, Fernando Daniel. Universitat Autònoma de Barcelona; España. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; ArgentinaMatematisk Inst2006-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/19438Nicolau, Artur; Suarez, Fernando Daniel; Approximation by invertible functions of H∞; Matematisk Inst; Mathematica Scandinavica; 99; 2; 12-2006; 287-3190025-5521CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.mscand.dk/article/view/15013info:eu-repo/semantics/altIdentifier/doi/10.7146/math.scand.a-15013info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:42:17Zoai:ri.conicet.gov.ar:11336/19438instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:42:17.339CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Approximation by invertible functions of H∞ |
title |
Approximation by invertible functions of H∞ |
spellingShingle |
Approximation by invertible functions of H∞ Nicolau, Artur aproximación |
title_short |
Approximation by invertible functions of H∞ |
title_full |
Approximation by invertible functions of H∞ |
title_fullStr |
Approximation by invertible functions of H∞ |
title_full_unstemmed |
Approximation by invertible functions of H∞ |
title_sort |
Approximation by invertible functions of H∞ |
dc.creator.none.fl_str_mv |
Nicolau, Artur Suarez, Fernando Daniel |
author |
Nicolau, Artur |
author_facet |
Nicolau, Artur Suarez, Fernando Daniel |
author_role |
author |
author2 |
Suarez, Fernando Daniel |
author2_role |
author |
dc.subject.none.fl_str_mv |
aproximación |
topic |
aproximación |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We provide an analytic proof that if H∞ is the algebra of bounded analytic functions on the unit disk, A is a Banach algebra and f : H∞→A is a Banach algebras morphism with dense image, then f((H∞) −1 ) is dense in A−1. Fil: Nicolau, Artur. Universitat Autònoma de Barcelona; España Fil: Suarez, Fernando Daniel. Universitat Autònoma de Barcelona; España. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina |
description |
We provide an analytic proof that if H∞ is the algebra of bounded analytic functions on the unit disk, A is a Banach algebra and f : H∞→A is a Banach algebras morphism with dense image, then f((H∞) −1 ) is dense in A−1. |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/19438 Nicolau, Artur; Suarez, Fernando Daniel; Approximation by invertible functions of H∞; Matematisk Inst; Mathematica Scandinavica; 99; 2; 12-2006; 287-319 0025-5521 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/19438 |
identifier_str_mv |
Nicolau, Artur; Suarez, Fernando Daniel; Approximation by invertible functions of H∞; Matematisk Inst; Mathematica Scandinavica; 99; 2; 12-2006; 287-319 0025-5521 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.mscand.dk/article/view/15013 info:eu-repo/semantics/altIdentifier/doi/10.7146/math.scand.a-15013 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Matematisk Inst |
publisher.none.fl_str_mv |
Matematisk Inst |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614455333224448 |
score |
13.070432 |