A comparative analysis of NSGA-II and NSGA-III for autoscaling parameter sweep experiments in the cloud

Autores
Yannibelli, Virginia Daniela; Pacini Naumovich, Elina Rocío; Monge, David; Mateos Diaz, Cristian Maximiliano; Rodríguez, Guillermo Horacio
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The Cloud Computing paradigm is focused on the provisioning of reliable and scalable virtual infrastructures that deliver execution and storage services. This paradigm is particularly suitable to solve resource-greedy scientific computing applications such as parameter sweep experiments (PSEs). Through the implementation of autoscalers, the virtual infrastructure can be scaled up and down by acquiring or terminating instances of virtual machines (VMs) at the time that application tasks are being scheduled. In this paper, we extend an existing study centered in a state-of-the-art autoscaler called multiobjective evolutionary autoscaler (MOEA). MOEA uses a multiobjective optimization algorithm to determine the set of possible virtual infrastructure settings. In this context, the performance of MOEA is greatly influenced by the underlying optimization algorithm used and its tuning. Therefore, we analyze two well-known multiobjective evolutionary algorithms (NSGA-II and NSGA-III) and how they impact on the performance of the MOEA autoscaler. Simulated experiments with three real-world PSEs show that MOEA gets significantly improved when using NSGA-III instead of NSGA-II due to the former provides a better exploitation versus exploration trade-off.
Fil: Yannibelli, Virginia Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
Fil: Pacini Naumovich, Elina Rocío. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Monge, David. Universidad Nacional de Cuyo; Argentina
Fil: Mateos Diaz, Cristian Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
Fil: Rodríguez, Guillermo Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
Materia
AUTOSCALING
CLOUD COMPUTING
METAHEURISTICS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/138197

id CONICETDig_255e7ab1b94749c4b7faefbbd07dfef7
oai_identifier_str oai:ri.conicet.gov.ar:11336/138197
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A comparative analysis of NSGA-II and NSGA-III for autoscaling parameter sweep experiments in the cloudYannibelli, Virginia DanielaPacini Naumovich, Elina RocíoMonge, DavidMateos Diaz, Cristian MaximilianoRodríguez, Guillermo HoracioAUTOSCALINGCLOUD COMPUTINGMETAHEURISTICShttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1The Cloud Computing paradigm is focused on the provisioning of reliable and scalable virtual infrastructures that deliver execution and storage services. This paradigm is particularly suitable to solve resource-greedy scientific computing applications such as parameter sweep experiments (PSEs). Through the implementation of autoscalers, the virtual infrastructure can be scaled up and down by acquiring or terminating instances of virtual machines (VMs) at the time that application tasks are being scheduled. In this paper, we extend an existing study centered in a state-of-the-art autoscaler called multiobjective evolutionary autoscaler (MOEA). MOEA uses a multiobjective optimization algorithm to determine the set of possible virtual infrastructure settings. In this context, the performance of MOEA is greatly influenced by the underlying optimization algorithm used and its tuning. Therefore, we analyze two well-known multiobjective evolutionary algorithms (NSGA-II and NSGA-III) and how they impact on the performance of the MOEA autoscaler. Simulated experiments with three real-world PSEs show that MOEA gets significantly improved when using NSGA-III instead of NSGA-II due to the former provides a better exploitation versus exploration trade-off.Fil: Yannibelli, Virginia Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaFil: Pacini Naumovich, Elina Rocío. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: Monge, David. Universidad Nacional de Cuyo; ArgentinaFil: Mateos Diaz, Cristian Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaFil: Rodríguez, Guillermo Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaIOS Press2020-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/138197Yannibelli, Virginia Daniela; Pacini Naumovich, Elina Rocío; Monge, David; Mateos Diaz, Cristian Maximiliano; Rodríguez, Guillermo Horacio; A comparative analysis of NSGA-II and NSGA-III for autoscaling parameter sweep experiments in the cloud; IOS Press; Scientific Programming; 2020; 8-2020; 1-171058-9244CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.hindawi.com/journals/sp/2020/4653204/info:eu-repo/semantics/altIdentifier/doi/10.1155/2020/4653204info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:04:28Zoai:ri.conicet.gov.ar:11336/138197instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:04:28.94CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A comparative analysis of NSGA-II and NSGA-III for autoscaling parameter sweep experiments in the cloud
title A comparative analysis of NSGA-II and NSGA-III for autoscaling parameter sweep experiments in the cloud
spellingShingle A comparative analysis of NSGA-II and NSGA-III for autoscaling parameter sweep experiments in the cloud
Yannibelli, Virginia Daniela
AUTOSCALING
CLOUD COMPUTING
METAHEURISTICS
title_short A comparative analysis of NSGA-II and NSGA-III for autoscaling parameter sweep experiments in the cloud
title_full A comparative analysis of NSGA-II and NSGA-III for autoscaling parameter sweep experiments in the cloud
title_fullStr A comparative analysis of NSGA-II and NSGA-III for autoscaling parameter sweep experiments in the cloud
title_full_unstemmed A comparative analysis of NSGA-II and NSGA-III for autoscaling parameter sweep experiments in the cloud
title_sort A comparative analysis of NSGA-II and NSGA-III for autoscaling parameter sweep experiments in the cloud
dc.creator.none.fl_str_mv Yannibelli, Virginia Daniela
Pacini Naumovich, Elina Rocío
Monge, David
Mateos Diaz, Cristian Maximiliano
Rodríguez, Guillermo Horacio
author Yannibelli, Virginia Daniela
author_facet Yannibelli, Virginia Daniela
Pacini Naumovich, Elina Rocío
Monge, David
Mateos Diaz, Cristian Maximiliano
Rodríguez, Guillermo Horacio
author_role author
author2 Pacini Naumovich, Elina Rocío
Monge, David
Mateos Diaz, Cristian Maximiliano
Rodríguez, Guillermo Horacio
author2_role author
author
author
author
dc.subject.none.fl_str_mv AUTOSCALING
CLOUD COMPUTING
METAHEURISTICS
topic AUTOSCALING
CLOUD COMPUTING
METAHEURISTICS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The Cloud Computing paradigm is focused on the provisioning of reliable and scalable virtual infrastructures that deliver execution and storage services. This paradigm is particularly suitable to solve resource-greedy scientific computing applications such as parameter sweep experiments (PSEs). Through the implementation of autoscalers, the virtual infrastructure can be scaled up and down by acquiring or terminating instances of virtual machines (VMs) at the time that application tasks are being scheduled. In this paper, we extend an existing study centered in a state-of-the-art autoscaler called multiobjective evolutionary autoscaler (MOEA). MOEA uses a multiobjective optimization algorithm to determine the set of possible virtual infrastructure settings. In this context, the performance of MOEA is greatly influenced by the underlying optimization algorithm used and its tuning. Therefore, we analyze two well-known multiobjective evolutionary algorithms (NSGA-II and NSGA-III) and how they impact on the performance of the MOEA autoscaler. Simulated experiments with three real-world PSEs show that MOEA gets significantly improved when using NSGA-III instead of NSGA-II due to the former provides a better exploitation versus exploration trade-off.
Fil: Yannibelli, Virginia Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
Fil: Pacini Naumovich, Elina Rocío. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Monge, David. Universidad Nacional de Cuyo; Argentina
Fil: Mateos Diaz, Cristian Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
Fil: Rodríguez, Guillermo Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
description The Cloud Computing paradigm is focused on the provisioning of reliable and scalable virtual infrastructures that deliver execution and storage services. This paradigm is particularly suitable to solve resource-greedy scientific computing applications such as parameter sweep experiments (PSEs). Through the implementation of autoscalers, the virtual infrastructure can be scaled up and down by acquiring or terminating instances of virtual machines (VMs) at the time that application tasks are being scheduled. In this paper, we extend an existing study centered in a state-of-the-art autoscaler called multiobjective evolutionary autoscaler (MOEA). MOEA uses a multiobjective optimization algorithm to determine the set of possible virtual infrastructure settings. In this context, the performance of MOEA is greatly influenced by the underlying optimization algorithm used and its tuning. Therefore, we analyze two well-known multiobjective evolutionary algorithms (NSGA-II and NSGA-III) and how they impact on the performance of the MOEA autoscaler. Simulated experiments with three real-world PSEs show that MOEA gets significantly improved when using NSGA-III instead of NSGA-II due to the former provides a better exploitation versus exploration trade-off.
publishDate 2020
dc.date.none.fl_str_mv 2020-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/138197
Yannibelli, Virginia Daniela; Pacini Naumovich, Elina Rocío; Monge, David; Mateos Diaz, Cristian Maximiliano; Rodríguez, Guillermo Horacio; A comparative analysis of NSGA-II and NSGA-III for autoscaling parameter sweep experiments in the cloud; IOS Press; Scientific Programming; 2020; 8-2020; 1-17
1058-9244
CONICET Digital
CONICET
url http://hdl.handle.net/11336/138197
identifier_str_mv Yannibelli, Virginia Daniela; Pacini Naumovich, Elina Rocío; Monge, David; Mateos Diaz, Cristian Maximiliano; Rodríguez, Guillermo Horacio; A comparative analysis of NSGA-II and NSGA-III for autoscaling parameter sweep experiments in the cloud; IOS Press; Scientific Programming; 2020; 8-2020; 1-17
1058-9244
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.hindawi.com/journals/sp/2020/4653204/
info:eu-repo/semantics/altIdentifier/doi/10.1155/2020/4653204
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv IOS Press
publisher.none.fl_str_mv IOS Press
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269857198899200
score 13.13397