Implementing cloud-based parallel metaheuristics: an overview
- Autores
- González, Patricia; Pardo, Xoán C.; Doallo, Ramón; Banga, Julio R.
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Metaheuristics are among the most popular methods for solving hard global optimization problems in many areas of science and engineering. Their parallel implementation applying HPC techniques is a common approach for efficiently using available resources to reduce the time needed to get a good enough solution to hard-to-solve problems. Paradigms like MPI or OMP are the usual choice when executing them in clusters or supercomputers. Moreover, the pervasive presence of cloud computing and the emergence of programming models like MapReduce or Spark have given rise to an increasing interest in porting HPC workloads to the cloud, as is the case with parallel metaheuristics. In this paper we give an overview of our experience with different alternatives for porting parallel metaheuristics to the cloud, providing some useful insights to the interested reader that we have acquired through extensive experimentation.
Facultad de Informática - Materia
-
Ciencias Informáticas
parallel metaheuristics, cloud computing, MPI, MapReduce, Spark
Heuristic methods - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/69947
Ver los metadatos del registro completo
id |
SEDICI_0726a9723b9b4f838facb1736bdbe7a4 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/69947 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Implementing cloud-based parallel metaheuristics: an overviewGonzález, PatriciaPardo, Xoán C.Doallo, RamónBanga, Julio R.Ciencias Informáticasparallel metaheuristics, cloud computing, MPI, MapReduce, SparkHeuristic methodsMetaheuristics are among the most popular methods for solving hard global optimization problems in many areas of science and engineering. Their parallel implementation applying HPC techniques is a common approach for efficiently using available resources to reduce the time needed to get a good enough solution to hard-to-solve problems. Paradigms like MPI or OMP are the usual choice when executing them in clusters or supercomputers. Moreover, the pervasive presence of cloud computing and the emergence of programming models like MapReduce or Spark have given rise to an increasing interest in porting HPC workloads to the cloud, as is the case with parallel metaheuristics. In this paper we give an overview of our experience with different alternatives for porting parallel metaheuristics to the cloud, providing some useful insights to the interested reader that we have acquired through extensive experimentation.Facultad de Informática2018-06info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf101-110http://sedici.unlp.edu.ar/handle/10915/69947enginfo:eu-repo/semantics/altIdentifier/isbn/978-950-34-1659-4info:eu-repo/semantics/reference/hdl/10915/69464info:eu-repo/semantics/reference/hdl/10915/71658info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:43:06Zoai:sedici.unlp.edu.ar:10915/69947Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:43:06.319SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Implementing cloud-based parallel metaheuristics: an overview |
title |
Implementing cloud-based parallel metaheuristics: an overview |
spellingShingle |
Implementing cloud-based parallel metaheuristics: an overview González, Patricia Ciencias Informáticas parallel metaheuristics, cloud computing, MPI, MapReduce, Spark Heuristic methods |
title_short |
Implementing cloud-based parallel metaheuristics: an overview |
title_full |
Implementing cloud-based parallel metaheuristics: an overview |
title_fullStr |
Implementing cloud-based parallel metaheuristics: an overview |
title_full_unstemmed |
Implementing cloud-based parallel metaheuristics: an overview |
title_sort |
Implementing cloud-based parallel metaheuristics: an overview |
dc.creator.none.fl_str_mv |
González, Patricia Pardo, Xoán C. Doallo, Ramón Banga, Julio R. |
author |
González, Patricia |
author_facet |
González, Patricia Pardo, Xoán C. Doallo, Ramón Banga, Julio R. |
author_role |
author |
author2 |
Pardo, Xoán C. Doallo, Ramón Banga, Julio R. |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas parallel metaheuristics, cloud computing, MPI, MapReduce, Spark Heuristic methods |
topic |
Ciencias Informáticas parallel metaheuristics, cloud computing, MPI, MapReduce, Spark Heuristic methods |
dc.description.none.fl_txt_mv |
Metaheuristics are among the most popular methods for solving hard global optimization problems in many areas of science and engineering. Their parallel implementation applying HPC techniques is a common approach for efficiently using available resources to reduce the time needed to get a good enough solution to hard-to-solve problems. Paradigms like MPI or OMP are the usual choice when executing them in clusters or supercomputers. Moreover, the pervasive presence of cloud computing and the emergence of programming models like MapReduce or Spark have given rise to an increasing interest in porting HPC workloads to the cloud, as is the case with parallel metaheuristics. In this paper we give an overview of our experience with different alternatives for porting parallel metaheuristics to the cloud, providing some useful insights to the interested reader that we have acquired through extensive experimentation. Facultad de Informática |
description |
Metaheuristics are among the most popular methods for solving hard global optimization problems in many areas of science and engineering. Their parallel implementation applying HPC techniques is a common approach for efficiently using available resources to reduce the time needed to get a good enough solution to hard-to-solve problems. Paradigms like MPI or OMP are the usual choice when executing them in clusters or supercomputers. Moreover, the pervasive presence of cloud computing and the emergence of programming models like MapReduce or Spark have given rise to an increasing interest in porting HPC workloads to the cloud, as is the case with parallel metaheuristics. In this paper we give an overview of our experience with different alternatives for porting parallel metaheuristics to the cloud, providing some useful insights to the interested reader that we have acquired through extensive experimentation. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/69947 |
url |
http://sedici.unlp.edu.ar/handle/10915/69947 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/isbn/978-950-34-1659-4 info:eu-repo/semantics/reference/hdl/10915/69464 info:eu-repo/semantics/reference/hdl/10915/71658 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 101-110 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260301104283648 |
score |
13.13397 |